Answer:
= -32.53 m / s
this velocity is directed downwards
Explanation:
This is a free fall exercise, let's use the expression
= v_{oy}^{2} + 2 g (y -yo)
where we are assuming that there is friction with the air, as the body falls its initial velocity is zero
v_{oy} = √ 2g (y - y₀)
let's calculate
v_{y} = √ (2 9.8 (0-54.0))
= -32.53 m / s
this velocity is directed downwards
Answer:
f = 3.09 Hz
Explanation:
This is a simple harmonic motion exercise where the angular velocity is
w² =
to find the constant (k) of the spring, we use Hooke's law with the initial data
F = - kx
where the force is the weight of the body that is hanging
F = W = m g
we substitute
m g = - k x
k =
we calculate
k =
k = 3.769 10² m
we substitute in the first equation
w² =
w = 19.415 rad / s
angular velocity and frequency are related
w = 2πf
f =
f = 19.415 / 2pi
f = 3.09 Hz
Answer:
Pascal's law says that pressure applied to an enclosed fluid will be transmitted without a change in magnitude to every point of the fluid and to the walls of the container.
Explanation:
The pressure at any point in the fluid is equal in all directions.
1.) equal volume of different substances have "different" masses.
2.)The more closely packed arrangement the particles of a substance have, "increases" its density.
3.)the SI unit of power is "Watts".
4.)an iron nail sinks in water but floats on " mercury ".
5.)balloons used for advertisements are filled with " helium" gas.
6.)"Conduction" is the primary mode of heat transfer in liquid and gases.
I hope this helps you...