To calculate the ideal mechanical advantage of a lever divide the input arm by the output arm.
Mechanical advantage is the amount by which a machine can multiply an input force, calculated by dividing output Force in newtons by input force in newtons, while the ideal mechanical advantage is the mechanical advantage of a machine that has no friction, calculated by dividing the input distance by the output distance.
Answer:
The kinetic energy of the system after the collision is 9 J.
Explanation:
It is given that,
Mass of object 1, m₁ = 3 kg
Speed of object 1, v₁ = 2 m/s
Mass of object 2, m₂ = 6 kg
Speed of object 2, v₂ = -1 m/s (it is moving in left)
Since, the collision is elastic. The kinetic energy of the system before the collision is equal to the kinetic energy of the system after the collision. Let it is E. So,

E = 9 J
So, the kinetic energy of the system after the collision is 9 J. Hence, this is the required solution.
Answer:
in left
Explanation:
Hope it will help
<em>p</em><em>l</em><em>e</em><em>a</em><em>s</em><em>e</em><em> </em><em>m</em><em>a</em><em>r</em><em>k</em><em> </em><em>a</em><em>s</em><em> </em><em>a</em><em> </em><em>b</em><em>r</em><em>a</em><em>i</em><em>n</em><em>l</em><em>i</em><em>s</em><em>t</em><em>s</em>
Answer:
The magnitude of the flux of electric field through a square of surface area is zero.
Explanation:

It is given that square box is parallel to yz-plane which has normal vector perpendicular to plane in x-direction. Angle between normal vector of area and electric field is 90°. Substituting in (1)
