Answer: pH = 2,897 , basic![[H+][OH-] = 10^{-14} ==> [H+] = \frac{10^{-14}}{7,89*10^{-12} } =\frac{1}{789} \\pH= -lg([H+]) = 2,897 \\pH basic](https://tex.z-dn.net/?f=%5BH%2B%5D%5BOH-%5D%20%3D%2010%5E%7B-14%7D%20%3D%3D%3E%20%5BH%2B%5D%20%3D%20%5Cfrac%7B10%5E%7B-14%7D%7D%7B7%2C89%2A10%5E%7B-12%7D%20%7D%20%3D%5Cfrac%7B1%7D%7B789%7D%20%5C%5CpH%3D%20-lg%28%5BH%2B%5D%29%20%3D%202%2C897%20%5C%5CpH%3C7%20%3D%3D%3E%20basic)
Explanation:
Answer:

Explanation:

if temperature is constant.

if we are comparing two gases,

Let chlorine be Gas 1 and ethane be Gas 2
Data:
M₁ = 70.91 g/mol
M₂ = 30.07 g/mol
Calculation

Answer:the force from spinning that moves things away from the center
Explanation: ap chem
Answer:
4.0 moles
Explanation:
The following data were obtained from the question:
Volume (V) = 12L
Pressure = 5.6 atm
Temperature (T) = 205K
Gas constant (R) = 0.08206 atm.L/Kmol
Number of mole (n) =?
Using the ideal gas equation: PV = nRT, the number of mole of the gas can be obtained as follow
PV = nRT
5.6 x 12 = n x 0.08206 x 205
Divide both side by 0.08206 x 205
n = (5.6 x 12)/(0.08206 x 205)
n = 4.0 moles
Therefore, the number of mole of the gas is 4.0 moles
Answer: The limiting reactant is Na
Explanation: