The molar mass of the gas is 77.20 gm/mole.
Explanation:
The data given is:
P = 3.29 atm, V= 4.60 L T= 375 K mass of the gas = 37.96 grams
Using the ideal Gas Law will give the number of moles of the gas. The formula is
PV= nRT (where R = Universal Gas Constant 0.08206 L.atm/ K mole
Also number of moles is not given so applying the formula
n= mass ÷ molar mass of one mole of the gas.
n = m ÷ x ( x molar mass) ( m mass given)
Now putting the values in Ideal Gas Law equation
PV = m ÷ x RT
3.29 × 4.60 = 37.96/x × 0.08206 × 375
15.134 = 1168.1241 ÷ x
15.134x = 1168.1241
x = 1168.1241 ÷ 15.13
x = 77.20 gm/mol
If all the units in the formula are put will get cancel only grams/mole will be there. Molecular weight is given by gm/mole.
Answer:
This is the balanced equation:
Pb(NO₃)₂ (aq) + 2NaI (aq) → 2NaNO₃ (aq) + PbI₂ (s) ↓
Explanation:
This are the reactants:
PbNO₃
NaI
Iodide can react to Pb²⁺ to make a solid compound.
Gle's cache of http://www.middleschoolchemistry.com/lessonplans/chapter5/lesson4<span>. It is a snapshot of the page as it appeared on 21 Oct 2017 07:24:57 GMT.</span>
Answer:
a. because it is an element
Explanation:
its pure because it only has one type of atom, making it an element