Newtons first law of motion is also known as the law of inertia
The answer is 21m because the motion is in one dimension with constant acceleration.
The initial velocity is 0, because it started from rest, the acceleration <span>ax</span> is <span>4.7<span>m<span>s2</span></span></span>, and the time t is <span>3.0s</span>
Plugging in our known values, we have
<span>Δx=<span>(0)</span><span>(3.0s)</span>+<span>12</span><span>(4.7<span>m<span>s2</span></span>)</span><span><span>(3.0s)</span>2</span>=<span>21<span>m</span></span></span>
Answer:
If a Gaussian surface is completely inside an electrostatic conductor, the electric field must always be zero at all points on that surface.
Explanation:
Option A is incorrect because, given this case, it is easier to calculate the field.
Option B is incorrect because, in a situation where the surface is placed inside a uniform field, option B is violated
Option C is also incorrect because it is possible to be a field from outside charges, but there will be an absence of net flux through the surface from these.
Hence, option D is the correct answer. "If a Gaussian surface is completely inside an electrostatic conductor, the electric field must always be zero at all points on that surface."
Explanation:
The speed of light is 300,000,000 m/s. There are 8 zeros, so in scientific notation, the speed is 3×10⁸ m/s.
The directions of magnetic force and magnetic field lines are shown in the figure.
The direction to find out the magnetic field lines is given by right hand curl rule. If the thumb shows the direction of current, then the curling fingers show the direction of magnetic field lines.
The direction of force can be given by right hand thumb rule, where
Thumb - Direction of magnetic field lines
Forefinger - Magnetic
force
Centre finger -
Current
Such that forefinger, centre finger and thumb must be at 90 degrees to each other.