Answer:
(i) 12 V in series with 18 Ω.
(ii) 0.4 A; 1.92 W
(iii) 1,152 J
(iv) 18Ω — maximum power transfer theorem
Explanation:
<h3>(i)</h3>
As seen by the load, the equivalent source impedance is ...
10 Ω + (24 Ω || 12 Ω) = (10 +(24·12)/(24+12)) Ω = 18 Ω
The open-circuit voltage seen by the load is ...
(36 V)(12/(24 +12)) = 12 V
The Thevenin's equivalent source seen by the load is 12 V in series with 18 Ω.
__
<h3>(ii)</h3>
The load current is ...
(12 V)/(18 Ω +12 Ω) = 12/30 A = 0.4 A . . . . load current
The load power is ...
P = I^2·R = (0.4 A)^2·(12 Ω) = 1.92 W . . . . load power
__
<h3>(iii)</h3>
10 minutes is 600 seconds. At the rate of 1.92 J/s, the electrical energy delivered is ...
(600 s)(1.92 J/s) = 1,152 J
__
<h3>(iv)</h3>
The load resistance that will draw maximum power is equal to the source resistance: 18 Ω. This is the conclusion of the Maximum Power Transfer theorem.
The power transferred to 18 Ω is ...
((12 V)/(18 Ω +18 Ω))^2·(18 Ω) = 144/72 W = 2 W
Answer:
Actualmente estoy trabajando en una pregunta diferente en este momento.
Explanation:
Actualmente estoy trabajando en una pregunta diferente en este momento.
Answer:
One
For surface-mounted and pendant-hung luminaires, support rods should be placed so that they extend about _one___
<h3>what is supported mounted?</h3>
- A structure that holds up or serves as a foundation for something else. Support is a synonym for mounting.
To learn more about it, refer
to brainly.com/question/25689052
#SPJ4
Answer:
a) 180 m³/s
b) 213.4 kg/s
Explanation:
= 1 m²
= 100 kPa
= 180 m/s
Flow rate

Volumetric flow rate = 180 m³/s
Mass flow rate

Mass flow rate = 213.4 kg/s