Answer: (D: Tweezers)
A basic first aid kit is always good to have in case of an emergency. The typical items found in a first aid kit are pain reliever, tweezers, alcohol wipes, gloves, antiseptic, medical tape, sterile gauze, insect bite swaps, triple-antibiotic ointment, hydrogen peroxide, bandage scissors, instant cold compresses, and of course bandages. There are various types of bandages that can be included; elastic bandages, adhesive bandages, and triangular bandages for starters.
Explanation:
Answer:
a) 0.684
b) 0.90
Explanation:
Catalyst
EO + W → EG
<u>a) calculate the conversion exiting the first reactor </u>
CAo = 16.1 / 2 mol/dm^3
Given that there are two stream one contains 16.1 mol/dm^3 while the other contains 0.9 wt% catalyst
Vo = 7.24 dm^3/s
Vm = 800 gal = 3028 dm^3
hence Im = Vin/ Vo = (3028 dm^3) / (7.24dm^3/s) = 418.232 secs = 6.97 mins
next determine the value of conversion exiting the reactor ( Xai ) using the relation below
KIm =
------ ( 1 )
make Xai subject of the relation
Xai = KIm / 1 + KIm --- ( 2 )
<em>where : K = 0.311 , Im = 6.97 ( input values into equation 2 )</em>
Xai = 0.684
<u>B) calculate the conversion exiting the second reactor</u>
CA1 = CA0 ( 1 - Xai )
therefore CA1 = 2.5438 mol/dm^3
Vo = 7.24 dm^3/s
To determine the value of the conversion exiting the second reactor ( Xa2 ) we will use the relation below
XA2 = ( Xai + Im K ) / ( Im K + 1 ) ----- ( 3 )
<em> where : Xai = 0.684 , Im = 6.97, and K = 0.311 ( input values into equation 3 )</em>
XA2 = 0.90
<u />
<u />
<u />
Answer:
a) -1.46 x 10∧-5, 1.445x 10∧-4, -6.355 x 10∧-4
b) 3.926 x 10∧-4, -2.626 x 10∧-4
c) 6.552 x 10∧-4, 6.5 x 10∧-5
Explanation:
a) -1.46 x 10∧-5, 1.445x 10∧-4, -6.355 x 10∧-4
b) 3.926 x 10∧-4, -2.626 x 10∧-4
c) 6.552 x 10∧-4, 6.5 x 10∧-5
The explanation is shown in the attachment. I hope i have been able to help.
Answer:
E = 2940 J
Explanation:
It is given that,
Mass, m = 12 kg
Position at which the object is placed, h = 25 m
We need to find the potential energy of the mass. It is given by the formula as follows :
E = mgh
g is acceleration due to gravity

So, the potential energy of the mass is 2940 J.