Answer:
98,614.82 W/m²
Explanation:

Where;
Q = the amount of heat loss from the pipe
h = the heat transfer coefficient of the pipe = 50 W/m².K
T₁ = the ambient temperature of the pipe = 30⁰C
T₂ = the outside temperature of the pipe = 100⁰C
L= the length of pipe
r₁ = inner radius of the pipe = 20mm
r₂ = outer radius of the pipe = 25mm
To determine the amount of heat loss from the pipe per unit length
From the equation above



= 98,614.82 W/m²
Answer:
b)false
Explanation:
Rolling is a process in which work piece passes through rolls to produce desired out put of the work piece.Rolling is a metal forming process.
We know that friction force is responsible for motion of work piece between rolls.If friction force is so small at the entrance side then work piece will not enter in the forming zone and forming process will not occurs.So the friction force should be high at the entrance side and low at the exit side.
So given statement is wrong.
The unique model production line is responsible for producing identical pieces. For this purpose the balancing of the assembly line is only responsible for assembling a model throughout the line.
This is a considerable difference compared to the mixed model assembly line where many models are assembled during the same production line, that is, it produces parts or products that have slight changes accommodated in them, with slight variations in their model or products of soft variety
The choice of the type of production depends on the type of company and its own demand, always prioritizing the efficiency in the operation. Generally, the mixed model tends to be chosen when demand is very large and customer demand is required to be met. In others it is considered a plant model in which half of the line is mixed and the other one is the only model in order to keep the efficiency balanced.
Answer:
13.95
Explanation:
Given :
Vector A polar coordinates = ( 7, 70° )
Vector B polar coordinates = ( 4, 130° )
To find A . B we will
A ( r , ∅ ) = ( 7, 70 )
A = rcos∅ + rsin∅
therefore ; A = 2.394i + 6.57j
B ( r , ∅ ) = ( 4, 130° )
B = rcos∅ + rsin∅
therefore ; B = -2.57i + 3.06j
Hence ; A .B
( 2.394 i + 6.57j ) . ( -2.57 + 3.06j ) = 13.95