Answer:
v (minimum speed) = 2.90 m/sec.
Maximum value of speed will occur at lowest point of vertical circle.
Explanation:
a) What minimum speed is necessary so that there is no tension in the string at the top of the circle but the rock stays in the same circular path?
Using the force balance expression at the top of the circle,
Gravitational Force + Tension force = Centrifugal force
Given that : T = 0
R = length of string = 0.86 m
mass of the spinning rock = 0.75 kg
v (minimum speed) = 2.90 m/sec.
b) what is the maximum speed the rock can have so that the string does not break?
Here the force balance at bottom of circle is represented by the illustration:
Given that:
maximum tension T = 45 N
maximum speed v = ??
mass m = 0.75 kg
∴
c)
At what point in the vertical circle does this maximum value occur?
Maximum value of speed will occur at lowest point of vertical circle.
This is so because at the lowest point; the tension in string will be maximum.
You have to reduce 2.00 an5.00 I order to use the×that=0.800
Deposition is the geological process in which sediments, soil and rocks are added to a landform or landmass
Answer:
100.390407
Explanation:
To find acceleration, you would use the formula a=f/m (acceleration equals force divided by mass) and then once you enter those numbers in the formula, a=180/1.793. Then you divide 180 divided by 1.793 which gets you an answer of 100.390407.
So the result is not biased or affected in some way