<span>The mass of Avogadro's number of Carbon-12 atoms, which exactly equals 12.000</span>
Answer:
S=720m anf vf=12m/s
Explanation:
acceleration=a=0.1m/s²
time taken=t=2minutes=2×60=120seconds
vi=0m/s
vf=?
distance covered=S=?
by using second equation of motion
S=vit+1/2at²
S=0m/s×120seconds+1/2(0.1m/s²)(120s)²
S=0m/s+1/2×1440m
S=720m
and now we have to find the vf
vf=vi+at
vf=0m/s+(0.1m/s)(120s)
vf=12m/s
i hope it will help you
Answer:
F' = (4/9)F
Explanation:
The electrostatic force between two charged objects is given by Coulomb's Law:
F = kq₁q₂/r² -------------------- equation (1)
where,
F = Electrostatic Force
k = Coulomb's Constant
q₁ = magnitude of first charge
q₂ = magnitude of second charge
r = distance between charges
Now, when the charges and distance altered as follows:
q₁' = 2q₁
q₂' = 2q₂
r' = 3r
Then,
F' = kq₁'q₂'/r'²
F' = k(2q₁)(2q₂)/(3r)²
F' = (4/9)kq₁q₂/r²
using equation (1):
<u>F' = (4/9)F</u>
<span>Each of these systems has exactly one degree of freedom and hence only one natural frequency obtained by solving the differential equation describing the respective motions. For the case of the simple pendulum of length L the governing differential equation is d^2x/dt^2 = - gx/L with the natural frequency f = 1/(2π) √(g/L). For the mass-spring system the governing differential equation is m d^2x/dt^2 = - kx (k is the spring constant) with the natural frequency ω = √(k/m). Note that the normal modes are also called resonant modes; the Wikipedia article below solves the problem for a system of two masses and two springs to obtain two normal modes of oscillation.</span>
Answer:
The box displacement after 6 seconds is 66 meters.
Explanation:
Let suppose that velocity given in statement represents the initial velocity of the box and, likewise, the box accelerates at constant rate. Then, the displacement of the object (
), in meters, can be determined by the following expression:
(1)
Where:
- Initial velocity, in meters per second.
- Time, in seconds.
- Acceleration, in meters per square second.
If we know that
,
and
, then the box displacement after 6 seconds is:

The box displacement after 6 seconds is 66 meters.