When you are going down you pick up more speed
The value of the force, F₀, at equilibrium is equal to the horizontal
component of the tension in string 2.
Response:
- The value of F₀ so that string 1 remains vertical is approximately <u>0.377·M·g</u>
<h3>How can the equilibrium of forces be used to find the value of F₀?</h3>
Given:
The weight of the rod = The sum of the vertical forces in the strings
Therefore;
M·g = T₂·cos(37°) + T₁
The weight of the rod is at the middle.
Taking moment about point (2) gives;
M·g × L = T₁ × 2·L
Therefore;
Which gives;
F₀ = T₂·sin(37°)
Which gives;
<u />
Learn more about equilibrium of forces here:
brainly.com/question/6995192
Energy to lift something =
(mass of the object) x (gravity) x (height of the lift).
BUT ...
This simple formula only works if you use the right units.
Mass . . . kilograms
Gravity . . . meters/second²
Height . . . meters
For this question . . .
Mass = 55 megagram = 5.5 x 10⁷ grams = 5.5 x 10⁴ kilograms
Gravity (on Earth) = 9.8 m/second²
Height = 500 cm = 5.0 meters
So we have ...
Energy = (5.5 x 10⁴ kilogram) x (9.8 m/s²) x (5 m)
= 2,696,925 joules .
That's quite a large amount of energy ... equivalent to
straining at the rate of 1 horsepower for almost exactly an
hour, or burning a 100 watt light bulb for about 7-1/2 hours.
The reason is the large mass that's being lifted.
On Earth, that much mass weighs about 61 tons.
Answer:
50m
Explanation:
Given parameters:
Initial velocity = 20m/s
Acceleration = 4m/s²
Time = 10s
Unknown:
Distance traveled by the rocket = ?
Solution:
To solve this problem use the expression below;
v² = u² + 2as
v is the final velocity
u is the initial velocity
a is the acceleration
s is the distance
final velocity = 0
Insert the parameters and solve;
0² = 20² + 2 x 4 x s
-400 = 8s
s = 50m
Disregard the negative sign because distance cannot be negative.
The magnitude (in N) of the force she must exert on the wrench is 150.1 N.
<h3>
Force exerted by the wrench</h3>
The force exerted by the wrench is calculated using torque formula as follows;
torque, τ = F x r x sinθ
where;
- F is the applied force
- r is the perpendicular distance if force applied
F = τ /(r sinθ)
F = (39) / (0.3 sin 60)
F = 150.1 N
Thus, the magnitude (in N) of the force she must exert on the wrench is 150.1 N.
Learn more about torque here: brainly.com/question/14839816
#SPJ1