To solve this problem it is necessary to apply the concepts related to the Centrifugal Force and the Gravitational Force. Since there is balance on the body these two Forces will be equal, mathematically they can be expressed as


Where,
m = Mass
G =Gravitational Universal Constant
M = Mass of the Planet
r = Distance/Radius
Re-arrange to find the velocity we have,

At the same time we know that the period is equivalent in terms of the linear velocity to,


If our values are that the radius of mars is 3400 km and the distance above the planet is 100km more, i.e, 3500km we have,



Replacing we have,



Therefore the correct answer is C.
Answer:
The wall is 680 meter away from the person.
Explanation:
Given data
Speed of sound = 340 
Given that Persons said hello toward the opposite side she has an echo hello 4 seconds later means it takes 2 seconds for the sound to reach the wall & again 2 seconds to reach the persons ear.
Therefore the distance between the person & wall is
D = speed × Time
D = 340 × 2
D = 680 meter
Therefore the wall is 680 meter away from the person.
The altitude or height of the pole vaulter as she crosses the bar is 4.04 m.
<h3>What is the height of the pole vaulter?</h3>
The height of the pole vaulter is determined from the change in kinetic energy which is equal to the potential energy at that height.
- Potential energy = Change in kinetic energy
h = (v - u)²/2g
h = (10 - 1.1)²/2 * 9.8
h = 4.04 m.
In conclusion, the height is determined from the potential energy at that height.
Learn more about potential energy at: brainly.com/question/14427111
#SPJ1
Answer:
I = 9.82 10⁻⁷ W / m²
Explanation:
The intensity of the sound wave is the energy of the wave between the order per unit area of the same
I = P / A = E / T A
the energy is calculated by integrating the mechanical energy in a period, where the mass is changed by the density and ‘s’ is the amplitude of the sound wave
I = ½ ρ v (w s)²
I = ½ 1.35 328 (2π 530 2.00 10⁻⁸)²
I = 221.4 (4.435 10⁻⁹)
I = 9.82 10⁻⁷ W / m²