Answer:
n = Initial volume/22.4L
Explanation:
The molar concept is simply one that is used to find the Number of moles and explain the relationship it has with avogadro's number, molecular mass, molar mass e.t.c.
Now, in terms of molar mass, number of moles is given by the formula;
n = mass of the sample/molar mass
In terms of avogadro's number, number of moles is;
1 mole = avogadro's number = 6.02 × 10^(23)
Now, when dealing with ideal gases, the molar volume of an ideal gas is 22.4 L.
Now the relationship between this volume and the mole concept is that the number of moles is gotten by dividing the initial volume by this molar volume.
Thus;
n = Initial volume/22.4L
There are two kinds of mixtures
a) homogeneous : the boundary of the two components is not physically distinct
b) heterogeneous:the boundary of the two components is physically distinct
the following separation techniques are common for mixtures
1) filtration: if the two components are forming heterogeneous mixture we can separate them by filtration.
2) boiling: if boiling point of one of the components is less than other
3) magnetic separation: if one of the component is magnetic
4)sieve method: for solid components with difference in size of particles
5) hand picking
Thus the correct match will be as shown in the figure
The thing that governs whether a reaction is exothermic is the energy given out / used up to break / form the bonds in the reaction.
<span>When two substances react, the bonds in those substances first break up, releasing energy, before re-forming in a different way, taking in energy. The nature of the bonds that are broken up and reformed determines whether more energy is given out (exothermic) or taken in (endothermic)</span>
Hm, this could be more than one option, but gaining electrons makes a negative charge, so
If atoms of a halogen nonmetal (Group 17) gains one electron, the atoms the have "a negative one charge".
I think It’s 55 but that’s just me