Answer:

Explanation:
We are given a number of particles and asked to convert to moles.
<h3>1. Convert Particles to Moles </h3>
1 mole of any substance contains the same number of particles (atoms, molecules, formula units) : 6.022 *10²³ or Avogadro's Number. For this question, the particles are not specified.
So, we know that 1 mole of this substance contains 6.022 *10²³ particles. Let's set up a ratio.

We are converting 2.98*10²³ particles to moles, so we multiply the ratio by that value.

The units of particles cancel.



<h3>2. Round</h3>
The original measurement of particles (2.98*10²³) has 3 significant figures, so our answer must have the same.
For the number we found, 3 sig figs is the thousandth place.
The 8 in the ten-thousandth place (0.4948522086) tells us to round the 4 up to a 5 in the thousandth place.

2.98*10²³ particles are equal to approximately <u>0.495 moles.</u>
The Formula to find the number of moles is:
Number of Moles = Mass/ Molar Mass
Which means that Mass = Number of Moles * Molar Mass
We know that Number of Moles of Sodium Na =

moles
If you check the Periodic Table, Molar Mass of Sodium Na = 23g/mol
So, Mass =

=
So, the mass in grams of

mol of Sodium is

Hope this Helps :)
Answer:
-100.125
Explanation:
We are given
CH4 (g) + 2O2 (g) → CO2 (g) + 2H2O (l) △H = -890.0 kJ/mol
The given information is for complete reaction
we have 1.8grams of Methane
Molar mass of CH4 = 16
No of moles of Methane = 1.8/ 16
= 0.1125
So the amount of the heat will be released from the amount of the methane
Q = No of moles*( -890.0 kJ/mol)
= 0.1125*(-890)
= -100.125kJ/mole
Therefore the amount of Energy released from 1.8 grams of methane is equal to -100.125