Answer:
See explanation
Explanation:
Solution:-
- The shell and tube heat exchanger are designated by the order of tube and shell passes.
- A single tube pass: The fluid enters from inlet, exchange of heat, the fluid exits.
- A multiple tube pass: The fluid enters from inlet, exchange of heat, U bend of the fluid, exchange of heat, .... ( nth order of pass ), and then exits.
- By increasing the number of passes we have increased the "retention time" of a specific volume of tube fluid; hence, providing sufficient time for the fluid to exchange heat with the shell fluid.
- By making more U-turns we are allowing greater length for the fluid flow to develop with " constriction and turns " into turbulence. This turbulence usually at the final passes allows mixing of fluid and increases the heat transfer coefficient by:
U ∝ v^( 0.8 ) .... ( turbulence )
- The higher the velocity of the fluids the greater the heat transfer coefficient. The increase in the heat transfer coefficient will allow less heat energy carried by either of the fluids to be wasted ; hence, reduced losses.
Thereby, increases the thermal efficiency of the heat exchanger ( higher NTU units ).
Answer:
a cable -stayed bridge has, one or more towers,from which cable support the bridge deck.
Answer:
a.)
US Sieve no. % finer (C₅ )
4 100
10 95.61
20 82.98
40 61.50
60 42.08
100 20.19
200 6.3
Pan 0
b.) D10 = 0.12, D30 = 0.22, and D60 = 0.4
c.) Cu = 3.33
d.) Cc = 1
Explanation:
As given ,
US Sieve no. Mass of soil retained (C₂ )
4 0
10 18.5
20 53.2
40 90.5
60 81.8
100 92.2
200 58.5
Pan 26.5
Now,
Total weight of the soil = w = 0 + 18.5 + 53.2 + 90.5 + 81.8 + 92.2 + 58.5 + 26.5 = 421.2 g
⇒ w = 421.2 g
As we know that ,
% Retained = C₃ = C₂×
∴ we get
US Sieve no. % retained (C₃ ) Cummulative % retained (C₄)
4 0 0
10 4.39 4.39
20 12.63 17.02
40 21.48 38.50
60 19.42 57.92
100 21.89 79.81
200 13.89 93.70
Pan 6.30 100
Now,
% finer = C₅ = 100 - C₄
∴ we get
US Sieve no. Cummulative % retained (C₄) % finer (C₅ )
4 0 100
10 4.39 95.61
20 17.02 82.98
40 38.50 61.50
60 57.92 42.08
100 79.81 20.19
200 93.70 6.3
Pan 100 0
The grain-size distribution is :
b.)
From the diagram , we can see that
D10 = 0.12
D30 = 0.22
D60 = 0.12
c.)
Uniformity Coefficient = Cu =
⇒ Cu =
d.)
Coefficient of Graduation = Cc =
⇒ Cc = = 1