Answer is: It has a negative charge and is located in orbitals around the nucleus.
The electron (symbol: e⁻) is a subatomic particle whose electric charge is negative one elementary charge.
Electrons are moving in energy levels around nucleus.
The electron has a mass that is approximately 1/1836 that of the proton.
Electrons have properties of both particles and waves.
5C2O4^(2-)(aq) + 2MnO4^-(aq) + 16H+(aq) → 10CO2(g) + 2Mn2+(aq) + 8H2O(l)` is the chemical reaction and mole ratio between oxalate and permanganate in the titration reaction.
A chemical reaction is a procedure that causes one group of chemical components to change chemically into another. Chemical reactions, which can frequently be described by a chemical equation, traditionally include changes that only affect the locations of electrons in the formation and dissolution of chemical bonds between atoms, with no change to the nuclei (no change to the elements present). The study of chemical processes involving unstable and radioactive elements, where both electronic and nuclear changes may take place, is known as nuclear chemistry.
To know more about chemical reaction, click here,
brainly.com/question/11231920
#SPJ4
Answer:
Elements and compounds are two types of pure substances.
Explanation:
Answer: 22 neutrons
Explanation: 40 is the mass number = atomic mass = total number of protons and neutrons in atomic nucleus
18 is the number of protons in the nucleus of this atom
Then 40 - 18 = 22 neutrons
and this is Argon
<u>Answer:</u> The mass of sucrose required is 69.08 g
<u>Explanation:</u>
To calculate the concentration of solute, we use the equation for osmotic pressure, which is:

Or,

where,
= osmotic pressure of the solution = 8.80 atm
i = Van't hoff factor = 1 (for non-electrolytes)
Mass of solute (sucrose) = ?
Molar mass of sucrose = 342.3 g/mol
Volume of solution = 564 mL (Density of water = 1 g/mL)
R = Gas constant = 
T = Temperature of the solution = 290 K
Putting values in above equation, we get:

Hence, the mass of sucrose required is 69.08 g