Answer : Option A) The direction the wire moves in
and Option C) the direction of the magnetic field.
Explanation : The direction of current flowing through the wire mainly depens on two factors which are i) direction of the wire moves in and ii) the direction of magnetic field.
The flow of current will occur in the direction of the wire through which it is moving in, whereas the direction of magnetic field will be in concentric circles around the direction of current passing through the wire.
The final volume of the gas that was heated from -25.0 °C to standard temperature is 2.2L.
<h3>How to calculate volume?</h3>
The volume of a given gas can be calculated using the Charles law equation as follows:
V1/T1 = V2/T2
Where;
- V1 = initial volume
- V2 = final volume
- T1 = initial temperature
- T2 = final temperature
- V1 = 2L
- V2 = ?
- T1 = -25°C + 273 = 248K
- T2 = 273K
2/248 = V2/273
273 × 2 = 248V2
546 = 248V2
V2 = 546/248
V2 = 2.2L
Therefore, the final volume of the gas that was heated from -25.0 °C to standard temperature is 2.2L
Learn more about volume at: brainly.com/question/11464844
Answer:
(a) Between methanol (CH₃OH) and glycerol (C₃H₅(OH)₃), the substance with the higher surface tension is glycerol (C₃H₅(OH)₃)
(b) Between tetrabromomethane (CBr₄) and chloroform (CHCl₃), the substance with the higher surface tension is chloroform (CHCl₃)
Explanation:
The surface tension of these substances at 20 °C given in mN/m, is as follows:
The surface tension of Methanol is 22.70
The surface tension of Tetrabromomethane is 26.95
The surface tension of Glycerol is 64.00
The surface tension of Chloroform is 27.50
(a) Between methanol (CH₃OH) and glycerol (C₃H₅(OH)₃), the substance with the higher surface tension is glycerol (C₃H₅(OH)₃)
(b) Between tetrabromomethane (CBr₄) and chloroform (CHCl₃), the substance with the higher surface tension is chloroform (CHCl₃)
Answer:<span> a) the process for the first ionization energy
</span>
<span>Every time you take a electron you're requiring more and more energy. Expelling the first one
will require less energy than expelling the second and the second will
require less than the third, and so on.
When you take the first one, the atom becomes positive and with that the negative forces of the electron will be more attracted to the positive
charge. The more electrons that are lost, the
more positive this ion will become, causing it to be more difficult to separate the
electrons from the atom.
</span>
They are called precipitates.