Explanation:
We know that a changing magnetic field induces a current in a conductor. For that reason a generator basically consist an element that produces a magnetic field that changes over time and a conductor where the current will be induced.
This element that produces a magnetic field can be one of the following:
- A permanent magnet: Which is basically like a regular magnet. The magnetic field that a permanent magnet produces does not change over time, we need a motor or any other external force to move the axis of the generator and cause the magnetic field to change.
- An electro-magnet. Which is basically a DC current flowing through a conductor. Basically, when current flows through a conductor it behaves exactly like a magnet. So what we commonly do, is to connect a conductor to a DC battery, and it will create a magnetic field.
Like we are using a DC battery to create a magnetic field, then the magnetic field won't change over time either. So we still need an external force to move the axis of the generator to produce AC electricity.
The answer is deflation...have a good day
Weight = (mass) x (gravity)
On Earth ...
Weight = (1 kg) x (9.8 m/s^2)
Weight = 9.8 Newtons
Answer:
The correct option is D
Explanation:
In trying to achieve what the student wanted to see, which is to see the relationship between the weight the cord can hold and how long the cord will stretch. Since the origin of the graph is from zero, the value plotted on the vertical axis would be just the length caused by each weights. Thus, <u>the original length would have to be subtracted from the measured length to determine the actual length caused by the weight added to the cord</u>.