Answer:
B
Explanation:
As the distance between the planets and the sun increases, the period of revolution increases as well. The period of revolution is how long it takes for a planet to revolve around the sun. So, because the planets farther from the sun have a higher period of revolution in earth years, this also means they have longer actual years, which means the answer is B.
Answer:
The correct answer is -
1. a) The bubbles will shrink, some may vanish.
2. a) Can A will make a louder and stronger fizz than can B.
Explanation:
In the first question, it is given that the bottle is not opened and therefore, squeezing the bottle filled with a carbonated drink will increase the pressure on the carbonated liquid which forces the bubbles to dissolve or displace or vanish as it moves to empty space.
Thus, the correct answer would be - The bubbles will shrink, some may vanish
In the second question, there are two different conditions for two different unopened cans of carbonated water that are different temperatures one at the garage with higher temperature and one in the fridge at low temperature. As it is known that higher the temperature less will be solubility of gas in liquid so gas in can A will be less soluble which means it has more gas and it will make louder and stronger fizz than B which was stored at low temperature.
thus, the correct answer would be - Can A will make a louder and stronger fizz than can B.
Δ H reaction = q / n where q: amount of heat released and n is number of moles of substance.
q = m . C . ΔT where:
m = mass of substance (g)
C = Specific heat capacity (4.18)
ΔT = change in temperature = 24.25 - 23.16 = 1.09
q = 1000 x 4.18 x 1.09 = 4556 J = 4.556 kJ
number of moles (n) = Molarity (M) x Volume (L)
= 0.185 M x 0.07 L = 0.01295 mole
Δ H = q / n = - (4.556 kJ / 0.01295 mole) = -351.8 kJ / mol
Note: it is exothermic reaction (-ve sign) i.e. temperature is raised