1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
morpeh [17]
2 years ago
8

Then, complete the riddle below by finding the matching number and writing the letter.

Physics
1 answer:
liq [111]2 years ago
3 0

Answer:

I have no clue I'm just trying to get points

Explanation:

:) sorry

You might be interested in
What is an example of radiation? check all that apply
Katen [24]
There are no appropriate examples in the list you provided with your question.

Examples of radiation:

... sunshine to tan your skin
... radio energy to bring you the news
... X-ray to check your teeth
... microwave to heat up the meatloaf
... flashlight to see where you're going
... RF energy to get an MRI of your knee
... infrared radiation from the campfire to warm your tootsies
... UHF radio waves to make a call or check Facebook with your smartphone
4 0
3 years ago
The parallel plates in a capacitor, with a plate area of 7.90 cm2 and an air-filled separation of 2.70 mm, are charged by a 7.90
s2008m [1.1K]

Answer:

A) 26V

Explanation:

(a) the potential difference between the plates

Initial capacitance can be calculated using below expresion

C1= A ε0/ d1

Where d1= distance between = 2.70 mm= 2.70× 10^-3 m

ε0= permittivity of space= 8.85× 10^-12 Fm^-1

A= area of the plate = 7.90 cm2 = 7.90 ×10^-4 m^2

If we substitute the values we

C1= A ε0/ d1

=( 7.90 ×10^-4 × 8.85× 10^-12 )/2.70× 10^-3

C1=2.589 ×10^-12 F= 2.59 pF

Initial charge can be determined using below expresion

q1= C1 × V1

V1=2.589 ×10^-12 F

V1= voltage=7.90 V

If we substitute we have

q1= 2.589 ×10^-12 × 7.90

q1= 20.45×10^-12C

20.45 pC

Final capacitance can be calculated as

C2= A ε0/ d2

d2=8.80 mm= /8.80× 10^-3

7.90 ×10^-4 × 8.85× 10^-12 )/8.80× 10^-3

C1=0.794 ×10^-12 F= 0.794 pF

Final charge= initial charge

q2=q1 (since the battery is disconnected)

q2=q1= 20.45 pC

Final potential difference

V2= q/C2

= 20.45/0.794

= 26V

6 0
3 years ago
9. Consider the elbow to be flexed at 90 degrees with the forearm parallel to the ground and the upper arm perpendicular to the
mojhsa [17]

Answer:

Moment about SHOULDER  ∑ τ = 3.17 N / m,

Moment respect to ELBOW   Στ= 2.80 N m

Explanation:

For this exercise we can use Newton's second law relationships for rotational motion

         ∑ τ = I α

   

The moment is requested on the elbow and shoulder at the initial instant, just when the movement begins.

They indicate the angular acceleration, for which we must look for the moments of inertia of the elements involved

The mass of the forearm with the included weight is approximately 2.3 kg, with a length of about 50cm

Moment about SHOULDER

          ∑ τ = I α

           I = I_forearm + I_sphere

the forearm can be approximated as a fixed bar at one end

            I_forearm = ⅓ m L²

the moment of inertia of the mass in the hand, let's approach as punctual

            I_mass = m L²

we substitute

           ∑ τ = (⅓ m L² + M L²) α

let's calculate

          ∑ τ = (⅓ 2.3 0.5² + 0.5 0.5²) 10

           ∑ τ = 3.17 N / m

Moment with respect to ELBOW

In this case, the arm exerts an upward force (muscle) that is about 3 cm from the elbow

         Στ = I α

         I = I_ forearm + I_mass

         I = ⅓ m (L-0.03)² + M (L-0.03)²

         

let's calculate

        i = ⅓ 2.3 0.47² + 0.5 0.47²

        I = 0.2798 Kg m²

        Στ = 0.2798 10

        Στ= 2.80 N m

3 0
3 years ago
Why are special techniques and extinguishing agents are required to fight combustible metals fires?
d1i1m1o1n [39]
Cucucicicicivigovogovphphpbpb
7 0
3 years ago
There is a uniform magnetic field of magnitude B, pervading all space, perpendicular to the plane of rod and rails. The rod is r
Charra [1.4K]

The right hand rule to find the direction of the magnetic field for a falling bar is:

  • The charge is positive the magnetic field is outgoing, horizontally and towards us.
  • The charge of the bar is negative, the magnetic field is incoming, that is horizontal away from us.

The magnetic force is given by the vector product of the velocity and the magnetic field.

        F = q v x B

Where the bolds indicate vectors, F is the force, q the charge on the particle, v the velocity and B the magnetic field.

In the vector product, the vectors are perpendicular, which is why the right-hand rule has been established, see attached:

  • The thumb points in the direction of speed.
  • Fingers extended in the direction of the magnetic field.
  • The palm is in the direction of the force if the charge is positive and in the opposite direction if the charge is negative.

They indicate that the bar is dropped, therefore its speed is vertical and downwards, it moves to the left therefore this is the direction of the force, we use the right hand rule, the magnetic field must be horizontal, we have two possibilities:

  • If the charge is positive the magnetic field is outgoing, horizontally and towards us.
  • If the charge of the bar is negative, the magnetic field is incoming, that is, horizontal away from us

In conclusion using the right hand rule we can find the direction of the magnetic field for a falling bar is:

  • The charge of the bar is negative, the magnetic field is incoming, that is horizontal away from us.
  • The charge is positive the magnetic field is outgoing, horizontally and towards us.

Learn more about the right hand rule here:  brainly.com/question/12847190

6 0
3 years ago
Other questions:
  • Give an example of a situation in which you would describe an
    10·1 answer
  • What does the quantum mechanical model determine about electrons in atoms
    11·1 answer
  • An object is thrown straight up into the air at 10 m/s. how fast is the object traveling after 2 seconds?
    15·1 answer
  • A cube of wood having an edge dimension of 18.0 cm and a density of 651 kg/m3 floats on water.(a) What is the distance from the
    13·1 answer
  • Why do you think festival dances should be introduced to the younger generations of today​
    15·2 answers
  • It is cold and dry outside. You go down the slide and experience a small electric shock. What charge must you and slide be in or
    11·2 answers
  • At a certain elevation, the pilot of a balloon has a mass of 120 lb and a weight of 119 lbf. What is the local acceleration of g
    9·1 answer
  • (Plzzzz help!!!) (50 points!!!)
    9·2 answers
  • 7. What is the velocity of an object with a distance of 90m south and a time of<br> 5s?
    9·1 answer
  • The freezing point of an aqueous 0.050 m cacl2solution is −0.27 °c. what is the van’t hoff factor (i) for cacl2at this concentra
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!