Answer:
B) an anion
Explanation:
During bonding atoms may share electron or give out electron . In the case of electrovalent or ionic bonding, electron(s) is/are transferred from one atom to another . The atom that donate the electron are known as donor atom and the atom that receives the electron are known as receivers.
The atom that donate the electron becomes a cation(positively charged) as it lose it electron(s) while the receiver gains electron to become an anion which is a negatively charge ion.
An example of such interaction is between a sodium atom and a chlorine atom. The Na atom lose it electron to become positively charged(cation) while the chlorine atom gains electron to become negatively charged(anion). Both atom bond together losing and gaining electron to fulfill the octet rule.
Na+ + Cl- → NaCl
The equilibrium expression shows the ratio
between products and reactants. This expression is equal to the concentration
of the products raised to its coefficient divided by the concentration of the
reactants raised to its coefficient. The correct equilibrium expression for the
given reaction is:<span>
<span>H2CO3(aq) + H2O(l)
= H3O+(aq) + HCO3-1(aq)
Kc = [HCO3-1] [H3O+] / [H2O] [H2CO3]</span></span>
The amount of current required to produce 75. 8 g of iron metal from a solution of aqueous iron (iii)chloride in 6. 75 hours is 168.4A.
The amount of Current required to deposit a metal can be find out by using The Law of Equivalence. It states that the number of gram equivalents of each reactant and product is equal in a given reaction.
It can be found using the formula,
m = Z I t
where, m = mass of metal deposited = 75.8g
Z = Equivalent mass / 96500 = 18.6 / 96500 = 0.0001
I is the current passed
t is the time taken = 75hour = 75 × 60 = 4500s
On subsituting in above formula,
75.8 = E I t / F
⇒ 75.8 = 0.0001 × I × 4500
⇒ I = 168.4 Ampere (A)
Hence, amount of current required to deposit a metal is 168.4A.
Learn more about Law of Equivalence here, brainly.com/question/13104984
#SPJ4
Pedigree charts are used to see traits that are present in families or individuals. For example, it can be used see if certain diseases are running through someone's family and if that individual will inherit the disease.