Answer:
If you throw a pebble into a pond, ripples
spread out from where it went in. These
ripples are waves travelling through the
water. The waves move with a transverse
motion.
Explanation:
Answer:
Ro = 133 [kg/m³]
Explanation:
In order to solve this problem, we must apply the definition of density, which is defined as the relationship between mass and volume.

where:
m = mass [kg]
V = volume [m³]
We will convert the units of length to meters and the mass to kilograms.
L = 15 [cm] = 0.15 [m]
t = 2 [mm] = 0.002 [m]
w = 10 [cm] = 0.1 [m]
Now we can find the volume.
![V = 0.15*0.002*0.1\\V = 0.00003 [m^{3} ]](https://tex.z-dn.net/?f=V%20%3D%200.15%2A0.002%2A0.1%5C%5CV%20%3D%200.00003%20%5Bm%5E%7B3%7D%20%5D)
And the mass m = 4 [gramm] = 0.004 [kg]
![Ro = 0.004/0.00003\\Ro = 133 [kg/m^{3}]](https://tex.z-dn.net/?f=Ro%20%3D%200.004%2F0.00003%5C%5CRo%20%3D%20133%20%5Bkg%2Fm%5E%7B3%7D%5D)
Answer:
3. if you increase your mass you also increase the gravitational pull
6. Radiant energy doesn't depend on a medium and sound energy is dependent on a medium.
Explanation:
i hope this helps-
I’d say two soccer balls that are touching each other, I hope that helps!
Answer:E
=
252
J
Explanation:
The total mechanical energy of an object or system is given by:
E
m
e
c
h
=
K
+
U
Where
K
is the kinetic energy of the object and
U
is the potential energy of the object. The carriage, sitting motionless at the top of the hill, has only potential energy in the form of gravitational potential energy.
Gravitational potential energy is given by:
U
g
=
m
g
h
Where
m
is the mass of the object,
g
is the gravitational acceleration constant, and
h
is the height of the object above some specific reference point, in this case the ground
21
m
below.
The weight of a stationary object at the surface of the earth is equal to the force of gravity acting on the object.
W
=
→
F
g
=
m
g
We are given that the carriage weighs
12
N
, therefore
m
g
=
12
N
.
U
g
=
12
N
⋅
21
m
⇒
U
g
=
252
N
m
=
252
J
Answer link
Explanation: