Answer:
(a) dynamic viscosity = 
(b) kinematic viscosity = 
Explanation:
We have given temperature T = 288.15 K
Density 
According to Sutherland's Formula dynamic viscosity is given by
, here
μ = dynamic viscosity in (Pa·s) at input temperature T,
= reference viscosity in(Pa·s) at reference temperature T0,
T = input temperature in kelvin,
= reference temperature in kelvin,
C = Sutherland's constant for the gaseous material in question here C =120

= 291.15
when T = 288.15 K
For kinematic viscosity :


Answer:
38 kJ
Explanation:
The solution is obtained using the energy balance:
ΔE=E_in-E_out
U_2-U_1=Q_in+W_in-Q_out
U_2=U_1+Q_in+W_in-Q_out
=38 kJ
Answer:
Kinetic energy can be used to develop electric energy which can be used as electricity.
Explanation:
The kinetic energy can be harnessed; much like some hydro power technologies harness water movement. A way to convert this kinetic energy into electric energy is through piezoelectric. By applying a mechanical stress to a piezoelectric crystal or material an electric current will be created and can be harvested.
Kinetic energy is also generated by the human body when it is in motion. Studies have also been done using kinetic energy and then converting it to other types of energy, which is then used to power everything from flashlights to radios and more.
Answer:
Check the explanation
Explanation:
Kindly check the attached image below to see the step by step explanation to the question above.