Answer:
(2) The excess negative charge from the sphere spread out all over your body.
(7) After you touched it, the metal sphere was very nearly neutral.
Explanation:
Plastic pen repels magic tape so magic tape is also negatively charged . Further , magic tape repels small metal sphere that means small sphere also is negatively charged.
Now when small sphere is touched by a man insulated from ground , the charge is distributed between man and small sphere according to their capacitance .
Since human body will have greater capacitance ,it will acquire larger share of charge . Sphere being of very small size will retain very less charge and it will become almost neutral . Hence it will be attracted by charged tape .
Answer: E) A) salt water.
Explanation:
E) In equilibrium, pressure exerts equally in all directions, so for a given depth, the pressure is the same for all points located at the same depth, and it can be written as follows:
p = p₀ + ρ.g.h, where p₀ = atmospheric pressure, ρ=fluid density, h=depth from the surface.
A) The buoyant force, as discovered by Archimedes, is an upward force, that opposes to the weight of an object (as it is always downward), and is equal to the weight of the volume of the liquid that the object removes, which means that is proportional to the density of the liquid.
As salt water is denser than fresh water, the buoyant force exerted by the salt water is always greater than the one produced by the fresh water, so objects will float more easily in salt water than in fresh water.
In the limit, it is possible that one object float in salt water and sink in fresh water.
M= ?
g=9.8 m/s (2)
h=20 m
Eg=362,600 J
Eg/mg
362,600 J/9.8 m/s (2) x 20 m
=1,850 m
Answer:
Vector quantities are important in the study of motion. Some examples of vector quantities include force, velocity, acceleration, displacement, and momentum. The difference between a scalar and vector is that a vector quantity has a direction and a magnitude, while a scalar has only a magnitude. Vector, in physics, a quantity that has both magnitude and direction. It is typically represented by an arrow whose direction is the same as that of the quantity and whose length is proportional to the quantity's magnitude. A quantity which does not depend on direction is called a scalar quantity. Vector quantities have two characteristics, a magnitude and a direction. The resulting motion of the aircraft in terms of displacement, velocity, and acceleration are also vector quantities. A vector quantity is different to a scalar quantity because a quantity that has magnitude but no particular direction is described as scalar. A quantity that has magnitude and acts in a particular direction is described as vector.
Explanation: