Colligative
properties calculations are used for this type of problem. Calculations are as
follows:<span>
</span>
<span>ΔT(freezing point)
= (Kf)m
ΔT(freezing point)
= 1.86 °C kg / mol (0.705)
ΔT(freezing point) = 1.3113 °C
</span>
<span>
</span>
<span>Hope this answers the question. Have a nice day.</span>
Answer:
a. A reaction in which the entropy of the system increases can be spontaneous only if it is endothermic.
Explanation:
The change in free energy (ΔG) that is, the <u>energy available to do work</u>, of a system for a constant-temperature process is:

-
When ΔG < 0 the reaction is spontaneous in the forward direction.
- When ΔG > 0 the reaction is nonspontaneous. The reaction is
spontaneous in the opposite direction.
- When ΔG = 0 the system is at equilibrium.
If <u>both ΔH and ΔS are positive</u>, then ΔG will be negative only when the TΔS term is greater in magnitude than ΔH. This condition is met when T is large.
Answer:
= -356KJ
<em>therefore, the reaction where heat is released is exothermic reaction since theΔH is negative</em>
Explanation:
given that enthalpy of gaseous reactants decreases by 162KJ and workdone is -194KJ
then,
change in enthalpy (ΔH) = -162( released energy)
work(w) = -194KJ
change in enthalpy is said to be negative if the heat is evolved during the reaction while heat change(ΔH) is said to be positive if the heat required for the reaction occurs.
At constant pressure the change in enthalpy is given as
ΔH = ΔU + PΔV
ΔU = change in energy
ΔV = change in volume
P = pressure
w = -pΔV
therefore,
ΔH = ΔU -W
to evaluate energy change we have,
ΔU =ΔH + W
ΔU = -162+ (-194KJ)
= -356KJ
<em>therefore, the reaction where heat is released is exothermic reaction since theΔH is negative</em>
<span>4NH</span>₃<span> + 6NO → 5N</span>₂<span> + 6H</span>₂<span>O
mol of NO = </span>
=
= 0.93 mol
Based on the balance equation mole ratio of NH₃ : NO is 4 : 6
= 2 : 3
If mol of NO = 0.93 mol
then mol of NH₃ =
= 0.62 mol
Mass of ammonia = mol × molar mass
= 0.62 mol × 17.03 g/mol
= 10.54 g
Therefore B is the best answer
CaI₂ + Hg(NO₃)₂ --------->HgI₂ + Ca(NO3)2
2Al + 3Cl₂ --------->2AlCl3
Ag + HCl ------->AgCl + H2
C2H2 + 5O2 --------> 4CO2 + 2H2O
MgCl₂ --------->Mg + Cl2