Answer: There are several ways. The first that comes to mind is a pH meter. A pH electrode Is lowered into the solution, and (Assuming) the pH Meter has been properly calibrated, and the temperature of the solution is set to the calibration of the Meter, the pH can be read directly from an analogue scale or digital readout. Below 7 is acidic, 7 is Neutral, (like Pure Water), and over 7 is Alkaline, or Basic.
A useful, but less accurate method is the use of any number of “pH Indicator Solutions”, which are essentially a type of various colored dyes that change color within differing pH ranges. Usually, if the pH is unknown, a small amount of solution is removed from the container and tested separately - in a “well plate”, or similar method.
These types of dyes, or Indicator Solutions, can be dried upon strips of “pH indicator Paper”, which, depending upon the type can be very useful when carrying out more precisely arrived at pH tests like Titration.
Just to see if a solution is “Acid” or “Base”, Litmus paper is used; “a Red color shows Acidity, and a Blue color, a Base”; ergo, “An Acid Solution will turn Litmus Paper, Red”.
Counting gives an exact number and exact numbers have infinite sig figs.
0.114 mol/l
The equilibrium equation will be:
Kc = ([Br2][Cl2])/[BrCl]^2
The square factor for BrCl is due to the 2 coefficient on that side of the equation.
Now solve for BrCl, substitute the known values and calculate.
Kc = ([Br2][Cl2])/[BrCl]^2
[BrCl]^2 * Kc = ([Br2][Cl2])
[BrCl]^2 = ([Br2][Cl2])/Kc
[BrCl] = sqrt(([Br2][Cl2])/Kc)
[BrCl] = sqrt(0.043 mol/l * 0.043 mol/l / 0.142)
[BrCl] = sqrt(0.001849 mol^2/l^2 / 0.142)
[BrCl] = sqrt(0.013021127 mol^2/l^2)
[BrCl] = 0.114110152 mol/l
Rounding to 3 significant figures gives 0.114 mol/l
At diverging plate boundaries, earthquakes occurs as the plates pull away from each other. Volcanoes form between the plates, as magma rises upward from the underlying mantle. Second, two plates may come together, at a converging plate boundary. Two situations are possible at converging plate boundaries.
The entropy of the process in which the individual ions first leave the crystal lattice is positive while the entropy of the process whereby the each ion becomes surrounded by a cluster of polar water molecules is negative.
<h3>What is entropy?</h3>
The term entropy has to do with the degree of disorder in a system. The higher the entropy of the system, the more the disorderliness of the system.
Now, the entropy of the process in which the individual ions first leave the crystal lattice is positive while the entropy of the process whereby the each ion becomes surrounded by a cluster of polar water molecules is negative.
Learn more about entropy: brainly.com/question/13146879