To calculate the force of impact F, first lets calculate the acceleration a of the ball:
a=v/t where v is the velocity of the ball and t is time
a=32/0.8=40 m/s²
To get the force F we need the Newtons second law:
F=m*a where m is the mass of the ball and a is the acceleration.
F=m*a= 0.2*40 = 8 N
So the impact force is F= 8 N.
Answer:
80%
Explanation:
Efficiency = Power output / Power input × 100 %
To calculate efficiency we need to find power output of electric pump.
We can use,
Work done = Energy change
Work done per second = Energy change per second
Work done per second = Power
Therefore, Power = Energy change per second
= Change in potential energy of water per second
=mgh / t
= 200× 10×6 / 10
= 1200 W = 1.2 kW
Now use the first equation to find efficiency,
Efficiency =
× 100%
= 80 %
In addition to possibly releasing harmful chemicals in the environment, mining is considered B. The most dangerous job in the United States.
Answer:
Global dependence on fossil fuels has associated social costs.
Explanation:
Increased dependence on fossil fuels reduces their availability. When the demand is high and the availability is low, the price rises. Not every nation would then be able to afford buying fossil fuels at such high costs.
Developing and underdeveloped countries would then be left behind and only the wealthy nations would be able to afford fossil fuel purchase. This would be the immediate impact of global dependence on fossil fuels.
Fossil fuels are mainly coal, petroleum and natural gas. Since fossil fuels are non-renewable in nature over exploitation may lead to fossil fuels getting exhausted.
Answer:
<em>The distance is now 4d</em>
Explanation:
<u>Mechanical Force</u>
According to the second Newton's law, the net force exerted by an external agent on an object of mass m is:
F = m.a
Where a is the acceleration of the object.
The acceleration can be calculated by solving for a:

Once we know the acceleration, we can calculate the distance traveled by the block as follows:

If the block starts from rest, vo=0:

Substituting the value of the acceleration:

Simplifying:

When a force F'=4F is applied and assuming the mass is the same, the new acceleration is:

And the distance is now:

Dividing d'/d:

Simplifying:

Thus:
d' = 4d
The distance is now 4d