1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ghella [55]
2 years ago
9

A sample of 2.50 kg of water is held at a temperature of 100°C. How much energy must be added to completely turn the liquid wate

r to water vapor? (The latent heat of vaporization for water is 2260 kJ/kg; the latent heat of fusion for water is 333 kJ/kg.)​
Physics
1 answer:
kap26 [50]2 years ago
7 0

Answer:

Explanation:

Since 100C is the boiling temperature for water, for this problem we don't need to calculate the energy needed to get to the boiling point, just the heat or energy needed to vaporize the water to steam at 100C.

The formula for this is  q=m(delta)

q is Joules of heat needed to vaporize the water to steam at 100C

m is mass in grams

Delta is in Joules per gram and can be looked up for water at this temperature. Here, it is approximately 2260J/g. This online lecture should help ease understanding: https://cabrillo.instructure.com/courses/10267/modules/items/256219

Therefore...

q=2.5g (2260J/g)= 5650J = 5.65kJ

I do not do Physics tutoring but am happy to answer questions here.

You might be interested in
A 0.450 kg soccer ball has a kinetic energy of 119 J.
Anastaziya [24]

Answer:

V is approximately = 23m/s

Explanation:

Kinetic energy = ½ mv²

Where m= mass = 0.450kg

V= velocity =?

K. E = 119J

Therefore

K. E = ½ mv²

Input values given

119= ½ × 0.450 × v²

Multiply both sides by 2

119 ×2  = 2 × 1/2 × 0.450 × v²

238= 0.450v²

Divide both sides by 0.450

238/0.450 = 0.450v²/0.450

v² = 528.89

Square root both sides

Sq rt v² = sq rt 528.89

V = 22.998m/s

V is approximately = 23m/s

I hope this was helpful, please rate as brainliest

8 0
3 years ago
A CFL bulb has an efficiency of 8.9% and a power of 22 W. How much light energy does the lightbulb produce in 1 second
hjlf
The power that the light is able to utilize out of the supply is only 0.089 of the given.
                           Power utilized = (0.089)(22 W)
                                                  = 1.958 W
                                                  = 1.958 J/s
The energy required in this item is the product of the power utilized and the time. That is,
                           Energy = (1.958 J/s)(1 s) = 1.958 J
Thus, the light energy that the bulb is able to produce is approximately 1.958 J. 
6 0
4 years ago
Read 2 more answers
The acceleration of an object is constant when its velocity is :
emmasim [6.3K]

Answer:

B. changing by a constant amount each second

Explanation:

thats my answer

5 0
3 years ago
Read 2 more answers
Initially, a 2.00-kg mass is whirling at the end of a string (in a circular path of radius 0.750 m) on a horizontal frictionless
drek231 [11]

Answer:

v_f = 15 \frac{m}{s}

Explanation:

We can solve this problem using conservation of angular momentum.

The angular momentum \vec{L} is

\vec{L}  = \vec{r} \times \vec{p}

where \vec{r} is the position and \vec{p} the linear momentum.

We also know that the torque is

\vec{\tau} = \frac{d\vec{L}}{dt}  = \frac{d}{dt} ( \vec{r} \times \vec{p} )

\vec{\tau} =  \frac{d}{dt}  \vec{r} \times \vec{p} +   \vec{r} \times \frac{d}{dt} \vec{p}

\vec{\tau} =  \vec{v} \times \vec{p} +   \vec{r} \times \vec{F}

but, as the linear momentum is \vec{p} = m \vec{v} this means that is parallel to the velocity, and the first term must equal zero

\vec{v} \times \vec{p}=0

so

\vec{\tau} =   \vec{r} \times \vec{F}

But, as the only horizontal force is the tension of the string, the force must be parallel to the vector position measured from the vertical rod, so

\vec{\tau}_{rod} =   0

this means, for the angular momentum measure from the rod:

\frac{d\vec{L}_{rod}}{dt} =   0

that means :

\vec{L}_{rod} = constant

So, the magnitude of initial angular momentum is :

| \vec{L}_{rod_i} | = |\vec{r}_i||\vec{p}_i| cos(\theta)

but the angle is 90°, so:

| \vec{L}_{rod_i} | = |\vec{r}_i||\vec{p}_i|

| \vec{L}_{rod_i} | = r_i * m * v_i

We know that the distance to the rod is 0.750 m, the mass 2.00 kg and the speed 5 m/s, so:

| \vec{L}_{rod_i} | = 0.750 \ m \ 2.00 \ kg \ 5 \ \frac{m}{s}

| \vec{L}_{rod_i} | = 7.5 \frac{kg m^2}{s}

For our final angular momentum we have:

| \vec{L}_{rod_f} | = r_f * m * v_f

and the radius is 0.250 m and the mass is 2.00 kg

| \vec{L}_{rod_f} | = 0.250 m * 2.00 kg * v_f

but, as the angular momentum is constant, this must be equal to the initial angular momentum

7.5 \frac{kg m^2}{s} = 0.250 m * 2.00 kg * v_f

v_f = \frac{7.5 \frac{kg m^2}{s}}{ 0.250 m * 2.00 kg}

v_f = 15 \frac{m}{s}

8 0
3 years ago
The gravitational force between two asteroids is 6. 2 × 108 N. Asteroid Y has three times the mass of asteroid Z. If the distanc
Sliva [168]

Answer:Let m =  mass of asteroid y.Because asteroid y has three times the mass of asteroid z, the mass of asteroid z is m/3.Given:F = 6.2x10⁸ Nd = 2100 km = 2.1x10⁶ mNote thatG = 6.67408x10⁻¹¹ m³/(kg-s²)The gravitational force between the asteroids isF = (G*m*(m/3))/d² = (Gm²)/(3d²)orm² = (3Fd²)/G     = [(3*(6.2x10⁸ N)*(2.1x10⁶ m)²]/(6.67408x10⁻¹¹ m³/(kg-s²))    = 1.229x10³² kg²m = 1.1086x10¹⁶ kg = 1.1x10¹⁶ kg (approx)Answer: 1.1x10¹⁶ kg

Explanation:

7 0
3 years ago
Other questions:
  • The heater element of a 120 V toaster is a 5.4 m length of nichrome wire, whose diameter is 0.48 mm. The resistivity of nichrome
    12·1 answer
  • An airplane flies at 400 km/h in a 100km/h hurricane crosswind. Find the resultant speed of the plane.
    6·1 answer
  • Which of the following is an example of an allocation decision?|
    13·2 answers
  • Which of the following body systems work together to get sells the oxygen they need to carry at the cellular respiration
    12·1 answer
  • Imagine two billiard balls on a pool table. Ball A has a mass of 2 kilograms and ball
    14·2 answers
  • At a distance of 14.0 m from a point source, the intensity level is measured to be 80 dB. At what distance from the source will
    11·2 answers
  • Describe how energy is transformed in the motor
    6·1 answer
  • Why is density used to determine the identity of matter?
    14·1 answer
  • A body when dropped into a jar ,containing kerosene and glycerine ,sinks below the kerosene level to float in glycerine as infig
    6·1 answer
  • A sled with a mass of 25.0 kg rests on a horizontal sheet of essentially frictionless ice. It is attached by a 5.00-m rope to a
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!