Answer:
Explanation:
During the swing , the center of mass will go down due to which disc will lose potential energy which will be converted into rotational kinetic energy
mgh = 1/2 I ω² where m is mass of the disc , h is height by which c.m goes down which will be equal to radius of disc , I is moment of inertia of disc about the nail at rim , ω is angular velocity .
mgr = 1/2 x ( 1/2 m r²+ mr²) x ω²
gr = 1/2 x 1/2 r² x ω² + 1/2r² x ω²
g = 1 / 4 x ω² r + 1 / 2 x ω² r
g = 3 x ω² r/ 4
ω² = 4g /3 r
= 4 x 9.8 / 3 x .25
= 52.26
ω = 7.23 rad / s .
Answer:
a.) L = 2.64 kgm^2/s
b.) V = 4.4 m/s
Explanation: Jessica stretches her arms out 0.60 m from the center of her body. This will be considered as radius.
So,
Radius r = 0.6 m
Mass M = 2 kg
Velocity V = 1.1 m/s
Angular momentum L can be expressed as;
L = MVr
Substitute all the parameters into the formula
L = 2 × 1.1 × 0.6 = 1.32kgm^2s^-1
the combined angular momentum of the masses will be 2 × 1.32 = 2.64 kgm^2s-1
b. If she pulls her arms into 0.15 m,
New radius = 0.15 m
Using the same formula again
L = 2( MVr)
2.64 = 2( 2 × V × 0.15 )
1.32 = 0.3 V
V = 1.32/0.3
V = 4.4 m/s
Her new linear speed will be 4.4 m/s