B
When frequency increases, as does the energy, but wavelength decreases. It also works vise versa; if wavelength were to increase, its frequency and energy will decrease.
Answer:
mm = 1043.33 g/mol
Explanation:
osmotic pressure (π):
∴ π = 17.8 torr = 0.0234 atm
∴ Cb: solute concentration
∴ T = 25°C = 298 K
∴ R = 0.082 atm.L/K.mol
⇒ Cb = π/RT
⇒ Cb = (0.0234 atm)/((0.082 atm.L/K.mol)(298 K))
⇒ Cb = 9.585 E-4 mol/L
molar mass (mm):
⇒ mm = (1.00 g/L)(L/9.585 E-4 mol)
⇒ mm = 1043.33 g/mol
Answer:
the change in energy of the gas mixture during the reaction is 227Kj
Explanation:
THIS IS THE COMPLETE QUESTION BELOW
Measurements show that the enthalpy of a mixture of gaseous reactants increases by 319kJ during a certain chemical reaction, which is carried out at a constant pressure. Furthermore, by carefully monitoring the volume change it is determined that -92kJ of work is done on the mixture during the reaction. Calculate the change of energy of the gas mixture during the reaction in kJ.
From thermodynamics
ΔE= q + w
Where w= workdone on the system or by the system
q= heat added or remove
ΔE= change in the internal energy
q=+ 319kJ ( absorbed heat is + ve
w= -92kJ
If we substitute the given values,
ΔE= 319 + (-92)= 227 Kj
With the increase in enthalpy and there is absorbed heat, hence the reaction is an endothermic reaction.
Answer: C. Al (aluminum)
Explanation: it has 3 valence electrons :)