Answer:
True
Explanation:
Going even smaller than atoms would get you to subatomic particles such as quarks. From there, it is impossible to distinguish elements. So, yes, atoms are the smallest portions of an element that retains the original characteristic of the element.
The answer is C) <span>The higher frequencies of visible light were scattered by the colloid particles.</span>
Answer:
<u>Distance</u><u> </u><u>between</u><u> </u><u>them</u><u> </u><u>is</u><u> </u><u>4</u><u>,</u><u>2</u><u>0</u><u>0</u><u> </u><u>meters</u><u>.</u>
Explanation:
Consinder car A:

substitute:

Consider car B:

since these cars move in opposite directions, distance between them is their summation:

Answer:
A. 1.172 metres
B. 6.82 Ns
C. 4.796 m/s
Explanation:
The total initial momentum is gotten by multiplying the mass and initial velocity of the both bodies.
The 1.40 kg block is at rest so velocity is zero and has no momentum.
The bullet of mass 22 g = 0.022 kg with velocity of 310 m/s
Momentum = 310*0.022
Momentum = 6.82 Ns.
If the bullet gets embedded they will both have common velocity v
6.82 = (0.022+1.40)v
6.82 = 1.422v
V = 6.82/1.422
V = 4.796 m/s
How high the block will rise after the bullet is embedded is given by
H = (U²Sin²tita)/2g
Where tita is 90°
H = (4.796² * sin²(90))/(2*9.81)
H =( 23.001616*1)/19.62
H = 1.172 metres