Answer:
(Interest rate/number of payments)*$170000= interest for the first month.
Interest amounts for all the months of repayment plus $170000=Total loan cost
Explanation:
Interest is the amount you pay for taking a loan from a bank on top of the original amount borrowed.
Factors affecting how much interest is paid are; the principal amount, the loan terms, repayment schedule, the repayment amount and the rate of interest.
The interest paid=(rate of interest/number of payments to make)*principal amount borrowed.
You divide the interest with number of payments done in a year where monthly are divided by 12.Multiplying it by loan balance in the first month which is your principal amount gives the interest rate to pay for that month.
You new loan balance will be= Principal -(repayment-interest)
Do this for the period the loan should take.
Add all the interest amount to original borrowed amount to get total cost of the loan after the period of time.
Answer:
The results of a percolation test will determine if there is suitable drainage and the size of the drain field that will be required for a septic system.
Answer:
Explanation:
ADT for an 2-D array:
struct array{
int arr[10];
}arrmain[10];
An application that stores an array with 1000 rows and 1000 columns, where less than 10,000 of the array values are non-zero. The two different implementations for such arrays that would be more space efficient than a standard two-dimensional array implementation requiring one million positions are :
1) struct array{
int *p;
}arr[1000];
2) struct array{
int *p;
}arr[1000];
Answer:
a)
, b) 
Explanation:
a) The coefficient of performance of a reversible refrigeration cycle is:

Temperatures must be written on absolute scales (Kelvin for SI units, Rankine for Imperial units)


b) The respective coefficient of performance is determined:



But:

The temperature at hot reservoir is found with some algebraic help:





Answer:
(C) passive state.
Explanation:
The earth pressure is the pressure exerted by the soil on the shoring system. They are three types of earth pressure which are:
a) Rest state: In this state, the retaining wall is stationary, this makes the lateral stress to be zero.
b) Active state: In this state, the wall moves away from the back fill, this leads to an internal resistance. Hence the active earth pressure is less than earth pressure at rest
c) Passive state: In this state the wall is pushed towards the back fill, this leads to shearing resistance. Hence, the passive earth pressure is greater than earth pressure at rest