Answer:
Chlorine
Explanation:
Each arrow represents one electron. Most of the boxes are filled, meaning they have two electrons. The last box only has one arrow, so it only has one electron. If you add it up, you get 17, which is Chlorine.
Answer: (E) 300 bq
Explanation:
Half life is the amount of time taken by a radioactive material to decay to half of its original value.
Radioactive decay process is a type of process in which a less stable nuclei decomposes to a stable nuclei by releasing some radiations or particles like alpha, beta particles or gamma-radiations. The radioactive decay follows first order kinetics.
Half life is represented by 
Half life of Thallium-208 = 3.053 min
Thus after 9 minutes , three half lives will be passed, after ist half life, the activity would be reduced to half of original i.e.
, after second half life, the activity would be reduced to half of 1200 i.e.
, and after third half life, the activity would be reduced to half of 600 i.e.
,
Thus the activity 9 minutes later is 300 bq.
Answer:
are a gas at very low volumes, when gas particles are very close together
a gas at very low temperatures, when gas particles have very little kinetic energy
a gas with highly polar molecules that have very strong intermolecular forces
Explanation:
Answer:
8 electrons
Explanation:
Magnesium is present on group 2.
It has 2 valence electrons.
Electronic configuration of magnesium:
Mg₁₂ = 1s² 2s² 2p⁶ 3s²
1st energy level contain 2 electrons.(1s²)
2nd energy level contain 8 electrons. (2s² 2p⁶)
3rd energy level contain 2 electrons. (3s²)
3rs energy level of magnesium is called valence shell. It contain two valance electrons. Magnesium can easily donate its two valance electrons and get stable electronic configuration.
It react with halogens and form salt. For example,
Mg + Cl₂ → MgCl₂
Answer:
Potassium permanganate has a molar mass of 158.04 g/mol. This figure is obtained by adding the individual molar masses of <em><u>four oxygen atoms</u></em>, <em><u>one manganese atom</u></em> and <em><u>one potassium atom</u></em>
Explanation: