Answer:
11.58 L of N₂
Explanation:
We'll begin by calculating the number of mole in 37.2 g of magnesium. This can be obtained as follow:
Mass of Mg = 37.2 g
Molar mass of Mg = 24 g/mol
Mole of Mg =?
Mole = mass /Molar mass
Mole of Mg = 37.2 / 24
Mole of Mg = 1.55 moles
Next, we shall write the balanced equation for the reaction. This is illustrated below:
3Mg + N₂ —> Mg₃N₂
From the balanced equation above,
3 moles of Mg reacted with 1 mole of N₂.
Therefore, 1.55 moles of Mg will react with = (1.55 × 1)/3 = 0.517 mole of N₂
Thus, 0.517 mole of N₂ is need for the reaction.
Finally, we shall determine the volume of N₂ needed for the reaction as follow:
Recall:
1 mole of a gas occupies 22.4 L at STP.
1 mole of N₂ occupied 22.4 L at STP.
Therefore, 0.517 mole of N₂ will occupy = 0.517 × 22.4 = 11.58 L at STP
Thus, 11.58 L of N₂ is needed for the reaction.
Answer: option D - The total number of nucleons changes.
Explanation:
Nuclear Reaction is best described as a process such as the fission of an atomic nucleus, or the fusion of one or more atomic nuclei and / or subatomic particles in which the NUMBER of PROTONS and / or NEUTRONS in a nucleus CHANGES; the reaction products may contain a different element or a different isotope of the same element.
Note that the NUCLEONS refers to ONE of the subatomic particles of the atomic nucleus, i.e. a PROTON or a NEUTRON.
So, in a Nuclear reaction, the total number of nucleons changes.
Answer:One carbon atom forms a double bond with an oxygen atom and two single bonds with two hydrogen atoms
Explanation: