Answer:
Friction of the road on the motorcycle in the opposite direction
Explanation:
Khanacademy
A car is built from various subsystems. If these subsystems are not working properly it is dangerous because it can cause a serious traffic accident.
<h3>What subsystems do cars have?</h3>
When you're testing the build of a car, you have to check its many subsystems:
- the battery
- the engine
- the cabin
- the thermal-management system
- the gearbox
- the chassis
- the suspension
<h3>Why is a car with damaged subsystems dangerous?</h3>
The subsystems of a car are very important components that allow the proper functioning of the car. These subsystems work synchronously making the car work properly.
However, if one of these subsystems is not working properly it could cause a malfunction that could lead to a traffic accident.
Learn more about cars in: brainly.com/question/11733094
Answer:
True
Explanation:
With the increase in temperature hypothalamus fails and heatstroke occurs due to this failure. Hypothalamus is the region of our brain that act as a thermostat. It co-ordinates our physiological response to excessive heat. When the person’s temperature reaches to 104 degrees then it causes heatstroke. This heatstroke is very sudden and can kill person. Hence, we can conclude that when person’s temperature reaches to 104 degrees chances of survival decreases dramatically.
Answer:
31
Explanation:
Given:
U=3
X=4
Y=7
u + xy
Substitute the given values to the equation:
3 + (4)(7)
3 + 28
31
Here is the rule for see-saws here on Earth, and there is no reason
to expect that it doesn't work exactly the same anywhere else:
(weight) x (distance from the pivot) <u>on one side</u>
is equal to
(weight) x (distance from the pivot) <u>on the other side</u>.
That's why, when Dad and Tiny Tommy get on the see-saw, Dad sits
closer to the pivot and Tiny Tommy sits farther away from it.
(Dad's weight) x (short length) = (Tiny Tommy's weight) x (longer length).
So now we come to the strange beings on the alien planet.
There are three choices right away that both work:
<u>#1).</u>
(400 N) in the middle-seat, facing (200 N) in the end-seat.
(400) x (1) = (200) x (2)
<u>#2).</u>
(200 N) in the middle-seat, facing (100 N) in the end-seat.
(200) x (1) = (100) x (2)
<u>#3).</u>
On one side: (300 N) in the end-seat (300) x (2) = <u>600</u>
On the other side:
(400 N) in the middle-seat (400) x (1) = 400
and (100 N) in the end-seat (100) x (2) = 200
Total . . . . . . . . . . . . <u>600</u>
These are the only ones to be identified at Harvard . . . . . . .
There may be many others but they haven't been discarvard.