<span>KE = 1/2mv^2
KE = 1/2(8)4 m/s^2
KE = 4*4
KE = 16 Joules
Kinetic energy would equal 16 J </span>
The answer the following are as follows:
<span> 1. XeF4 - molecules are polar
3. CCl4 - molecules are polar
5. CH3Br - molecules are non-polar
I hope my answer has come to your help. God bless and have a nice day ahead!</span>
Answer:
0.554M of Calcium Bromide
Explanation:
Molarity by defintion is #of moles of something/litres of solution.
Therefore, here, we have 0.277 moles of calcium bromide and 500mL (divide 500ml by 1000 to go from mL to L because for every 1L there's 1000mL) or 0.5L.
Molarity= 0.277/0.5 = 0.554M of Calcium Bromide
To solve this problem, we use Beer's Law: A= ε.l.c
A is the absorbance- 0,558
<span>ε is</span> the molar absorptivity- is <span>15000 </span><span><span>L⋅mol-1</span><span>cm-1</span></span>
<span>l is </span>the length of the cuvette- 1 cm
<span>c is</span> the molar concentration
Applying the formula,
0,558= 15000 x 1 x c
0,558/15000= c
c= <span>3.72×<span>10⁻⁵ </span> <span>mol⋅L<span>⁻¹</span></span></span>
<span />
Answer:
A. 6atm
Explanation:
Using pressure law equation:
P1/T1 = P2/T2
Where;
P1 = initial pressure (atm)
T1 = initial temperature (K)
P2 = final pressure (atm)
T2 = final temperature (K)
According to this question;
P1 = 3 atm
P2 = ?
T1 = 120K
T2 = 240K
Using P1/T1 = P2/T2
3/120 = P2/240
Cross multiply
240 × 3 = P2 × 120
720 = 120P2
P2 = 720/120
P2 = 6atm