Answer: 25.38 m/s
Explanation:
We have a straight line where the car travels a total distance
, which is divided into two segments
:
(1)
Where 
On the other hand, we know speed is defined as:
(2)
Where
is the time, which can be isolated from (2):
(3)
Now, for the first segment
the car has a speed
, using equation (3):
(4)
(5)
(6) This is the time it takes to travel the first segment
For the second segment
the car has a speed
, hence:
(7)
(8)
(9) This is the time it takes to travel the secons segment
Having these values we can calculate the car's average speed
:
(10)
(11)
Finally:
To answer this question do you need to know the formula to get the rate of change of acceleration (a=Δv/Δt; Δv= final velocity - initial velocity) and the formula to find the force of an object given a constant acceleration (F=m*a). Given these two formulas you can applicate them to solve for the mass of an object.
We know, a = v/t
Here, a = 5 m/s²
v = 50 km/h= 13.88 m/s
Substitute their values into the expression:
5 = 13.88 / t
t = 13.88/5
t = 2.78 sec
Now, we know, v = d/t
13.88 = d/2.78
d = 13.88 * 2.78
d = 38.53 meter
In short, Your Answers would be:
i) It will take 2.78 sec
ii) It will travel for 38.53 m after a brakes applied.
Hope this helps!
Complete question:
The left plate of a parallel plate capacitor carries a positive charge Q, and the right plate carries a negative charge -Q. The magnitude of the electric field between the plates is 100 kV/m. The plates each have an area of 2 x 10⁻³ m², and the spacing between the plates is 6 x 10⁻³ m. There is no dielectric between the plates. What is the charge on the capacitor?
Answer:
The charge on the capacitor is 1.77nC
Explanation:
Given;
magnitude of electric field between the plates, E = 100 kV/m
Area of each plate, A = 2 x 10⁻³ m²
Distance between the plates, d = 6 x 10⁻³ m
Charge on the capacitor is calculated as;
Q = CV
V = Ed


Therefore, the charge on the capacitor is 1.77nC