Explanation:
its either a or d however i say the best choice is d
Answer:
160 kg
12 m/s
Explanation:
= Mass of first car = 120 kg
= Mass of second car
= Initial Velocity of first car = 14 m/s
= Initial Velocity of second car = 0 m/s
= Final Velocity of first car = -2 m/s
= Final Velocity of second car
For perfectly elastic collision
Applying in the next equation
Mass of second car = 160 kg
Velocity of second car = 12 m/s
Answer:
2.464 cm above the water surface
Explanation:
Recall that for the cube to float, means that the volume of water displaced weights the same as the weight of the block.
We calculate the weight of the block multiplying its density (0.78 gr/cm^3) times its volume (11.2^3 cm^3):
weight of the block = 0.78 * 11.2^3 gr
Now the displaced water will have a volume equal to the base of the cube (11.2 cm^2) times the part of the cube (x) that is under water. Recall as well that the density of water is 1 gr/cm^3.
So the weight of the volume of water displaced is:
weight of water = 1 * 11.2^2 * x
we make both weight expressions equal each other for the floating requirement:
0.78 * 11.2^3 = 11.2^2 * x
then x = 0.78 * 11.2 cm = 8.736 cm
This "x" is the portion of the cube under water. Then to estimate what is left of the cube above water, we subtract it from the cube's height (11.2 cm) as follows:
11.2 cm - 8.736 cm = 2.464 cm
Answer:
The pressure difference will increase by the factor of 1.75
Explanation:
For constant flow rate, coefficient of viscosity, length of the vessel and the pressure difference is inversely proportional to the fourth power of the radius of the blood vessel
Apply the principle of Poiseuille’s law.
Q = (P2 - P1)/R
Pls check the attached file for step by step solution of the question. It is submitted in this way as typing the equation may not be explanatory.
Answer: C
high; large
Explanation:
The wave energy is related to its amplitude and frequency.
The wave energy is proportional to the amplitude of the wave. So, wave with the most energy will have high amplitude.
Also, frequency is related to wave energy. The larger the frequency, the more the energy of the wave.
Therefore, The waves with the MOST energy have high amplitudes and large
frequencies.