Answer:
7.5 moles
Explanation:
We'll begin by writing the balanced equation for the reaction. This is given below:
3Cu + 2H3PO4 —> Cu3(PO4)2 + 3H2
From the balanced equation above,
3 moles of Cu reacted with 2 moles of H3PO4.
Therefore, Xmol of Cu will react with 5 moles of H3PO4 i.e
Xmol of Cu = (3 x 5)/2
Xmol of Cu = 7.5 moles
Therefore, 7.5 moles of Cu are needed to react with 5 moles of H3PO4.
Explanation:
It is known that equation for ideal gas is as follows.
PV = nRT
The given data is as follows.
Pressure, P = 1500 psia, Temperature, T =
= 104 + 460 = 564 R
Volume, V = 2.4 cubic ft, R = 10.73 
Also, we know that number of moles is equal to mass divided by molar mass of the gas.
n = 
m = 
=
= 9.54 lb
Hence, molecular weight of the gas is 9.54 lb.
- We will calculate the density as follows.
d = 
=
= 3.975 
- Now, calculate the specific gravity of the gas as follows.
Specific gravity relative to air =
= 
= 51.96
<u>Answer:</u> The lewis dot structure is attached below.
<u>Explanation:</u>
A Lewis dot structure is defined as the representation of atoms having electrons around the atom where electrons are represented as dots.
A ketene is an organic compound having general formula R′R″C=C=O, where R and R' are two different/same monovalent chemical groups.
The given chemical compound having formula
is represented as
.
Total number of unshared electrons = 4 (left on oxygen atom only)
The lewis dot structure of
is given in the image below.
False, they are all different because they help you know different things.
Answer:
M
Explanation:
Henry's law relational the partial pressure and the concentration of a gas, which is its solubility. So, at the sea level, the total pressure of the air is 1 atm, and the partial pressure of O2 is 0.21 atm. So 21% of the air is O2.
Partial pressure = Henry's constant x molar concentration
0.21 = Hx1.38x
H = 
H = 152.17 atm/M
For a pressure of 665 torr, knowing that 1 atm = 760 torr, so 665 tor = 0.875 atm, the ar concentration is the same, so 21% is O2, and the partial pressure of O2 must be:
P = 0.21*0.875 = 0.1837 atm
Then, the molar concentration [O2], will be:
P = Hx[O2]
0.1837 = 152.17x[O2]
[O2] = 0.1837/15.17
[O2] =
M