That depends on how far it is from the nearest planet. If it's on the surface of Earth, it weighs (19 kg) x (9.8 m/s^2) = 186.2 newtons.
<h2>
Answer: an underground lake</h2>
Explanation:
In general, sound (mechanical waves) travels faster in solids than in liquids, and faster in liquids than in gases. This is because <u>the speed of the mechanical waves is determined by a relationship between the elastic properties of the medium </u>in which they are propagated and the mass per unit volume of the medium (that is:<u>density</u>).
In other words: The speed of sound varies depending on the medium through which the sound waves travel.
So, if we are told the sound wave initially had a speed of 4,000 m/s and it suddenly decreases to 1,500 m/s, this means the sound waves passed from a solid medium to a liquid medium.
Hence, the correct option is: an underground lake.
To solve this problem we will apply the concepts related to the work theorem for which it is defined as the product of Force and distance. In turn, we will use the energy conservation theorem for which the applied work must be equivalent to the total kinetic energy on the body.
The work is defined as

Here,
F = Force
d = Displacement
Replacing with our values we have that


Now by conservation of energy,



Solving for v,


Therefore the correct answer is D.
Answer:
CaCl2 is a reactant
Explanation:
Calcium carbonate (CaCO3) is a reagent, it is found on the left side, what is found on the right side are the products.