Answer:
45000 K .
Explanation:
Given :
A liter of a gas weigh 2 gram at 300 kelvin temperature and 1 atm pressure
We need to find the temperature in which 1 litre of the same gas weigh 1 gram
in pressure 75 atm.
We know, by ideal gas equation :

Here , n is no of moles , 
Putting initial and final values and dividing them :


Hence , this is the required solution.
Answer:
the answer is
Explanation:For equilibrium
Weight = Tension
mg=T
∴T=4×3.1π=12.4πN (as can be inferred from the question)
Y=
△l/l
T/A
=
1000
0.031
/20
12.4π/π(
1000
2
)
2
=
4×0.031
12.4×20×1000×(1000)
2
=2×10
12
N/m
2
Answer:
0.012-m
Explanation:
∆L = α × Lo × (T-To)
α is the coefficient of linear expansion = 12 × 10-6 K-1
Lo = Initial length = 25-m
∆L = Change in length
(T-To) = 40 K
∆L = 12 × 10-6 × 25 × 40
∆L = 0.012-m

Those reaction in which two or more substances combine to form a one new substance are called Combination reaction
In this reaction, We can add :
- Two or more elements can combine to form a compound.
- Two or more compounds can combine to from a one new compound.
- An element and a compound can combine to form a new compound.


In this, Hydrogen is an element and Oxygen is another element. Both are combined to form compound 'Hydrogen oxide'. Hydrogen oxide is commonly known as water.
The answer on Edge would be (A.)= Larger and Cooler ! I'm doing the same thing as y'all. Good luck everyone.