1 astronomical unit 1 AU = 1.4960 * 10^11 meters
it is the average distance between earth and sun
mercury to sun distance is = 46,000,000 * 1000 meters
= 4.6 * 10^9 meters = 4.6 * 10^9 / 1.4960 * 10^11 AU
= 3.0.74 / 100 = 0.0374 AU
Answer:
position as a function of time is y = 0.05 × cos(9.9)t
Explanation:
given data
mass = 5 kg
length = 10 cm = 0.1 m
displaced = 5 cm
to find out
position as a function of time
solution
we will apply here equilibrium that is
mass × g = k × length
put here value and find k
k = 
k = 490 N/m
and ω is
ω = 
ω = 
ω = 9.9
so here position w.r.t time is
y = 0.05 × cosωt
y = 0.05 × cos(9.9)t
so position as a function of time is y = 0.05 × cos(9.9)t
Answer:
C. Both technicians A and B
Explanation:
Both technicians are absolutely correct because a functional test light is meant to light on both test point if the fuse is working fine which implies that, if the test light doesn't light on both sides then there must be a fault with the fuse. So, both technicians A and B are very correct.
Answer: mechanical energy
Explanation: I hope this helps! Also, please mark as brainliest, thanks!
Beta emission is occurring in the given nuclear reaction.
Answer: Option B
<u>Explanation:</u>
In this equation, the reactant is the Thorium atom, which is reduced to palladium. As the atomic number get decreased by one, so an electron will be emitted. This process of emission of electrons by radiation or decaying the reactant nuclei to form a new product nuclei is termed as beta emission.
So, the electrons are generally termed as beta particles while the positrons are termed as positive beta particles. So this is a kind of radioactive reactions where the reactant changes to new element by releasing an electron and thus there is a change in the atomic number of the product by one.