With the values you've given, only velocity can be found.
Acceleration is rate of change of velocity
d= 250s
t= 17s
a= d/t
=

= 4.7
The second ball should strike at double the original t value
Answer:
The maximum height reached by the water is 117.55 m.
Explanation:
Given;
initial velocity of the water, u = 48 m/s
at maximum height the final velocity will be zero, v = 0
the water is going upwards, i.e in the negative direction of gravity, g = -9.8 m/s².
The maximum height reached by the water is calculated as follows;
v² = u² + 2gh
where;
h is the maximum height reached by the water
0 = u² + 2gh
0 = (48)² + ( 2 x -9.8 x h)
0 = 2304 - 19.6h
19.6h = 2304
h = 2304 / 19.6
h = 117.55 m
Therefore, the maximum height reached by the water is 117.55 m.
Answer:
(d) Negative.
Explanation:
let's test each at a time.
(a) It can't be 0, because cup would slide back other wise.
(b) Positive, well if forward is positive, than the work done against the forward acceleration must be negative , so it can't be positive.
(c) Equal to non-conservative work done by the car's engine.
well no, because work done by car's engine dosen't go all of it into getting car to move, so it can't be that.
(d) negative, this look like it, because work that friction does must be nagative to counteract positive thrust of car which is positive and in forward direction.
(d) this can't be true.
So the answer is (d) negative.
Igneous rock your welcome