Answer:
Explanation:
We put the charges in the ascending order as follows
1.53 P
3.26 P
4.66 P
5.09 P
6.39 P
where P is equal to 10⁻¹⁹
we round off given charges as follows
1.53 P → 1.6 P
3.26 P → 3.2 P
4.66 P → 4.8 P
5.09 P → 4.8 P
6.39 P → 6.4 P
We see that 2 nd to 4 th charges are integral multiples of first charge . That means these charges are supposed to be made of combination of first charge . So first charge appears to be minimum possible charge .
Hence this charge may exist on single electron.
The statement: Mass affects how fast an object falls is true.
Answer:
(a) 1.257 x 10^5 J
(b) 1.456 Watt
Explanation:
Volume of blood, v = 7500 L = 7.5 m^3
Height, h = 1.63 m
density of blood, d = 1.05 x 10^3 kg/m^3
(a) work done = m x g x h
W = v x d x g x h = 7.5 x 1.05 x 1000 x 9.8 x 1.63 = 1.257 x 10^5 J
(b) time = 1 day = 24 x 60 x 60 s = 86400 seconds
Power = Work / time = 1.257 x 10^5 / 86400 = 1.456 Watt
Answer:
Kepler's first law means that planets move around the Sun in elliptical orbits. An ellipse is a shape that resembles a flattened circle. ... It is zero for a perfect circle.
-- The acceleration of gravity is 9.8 m/s².
So if there's no air resistance, the speed of a falling object
always increases by 9.8 m/s for every second it falls.
Speed = (original speed) + (gravity x falling time)
-- If it has no vertical speed when it started, then at the end
of 3 seconds, its speed is
= (0) + (9.8 m/s² x 3 sec)
Velocity = 29.4 m/s downward .