Answer:
1.4 × 10^-4 M
Explanation:
The balanced redox reaction equation is shown below;
5Fe2+ + MnO4- + 8H+ --> 5Fe3+ +Mn2+ + 4H2O
Molar mass of FeSO4(NH4)2SO4*6H2O = 392 g/mol
Number of moles Fe^2+ in FeSO4(NH4)2SO4*6H2O = 3.47g/392g/mol = 8.85 × 10^-5 moles
Concentration of Fe^2+ = 8.85 × 10^-5 moles × 1000/200 = 4.425 × 10^-4 M
Let CA be concentration of Fe^2+ = 4.425 × 10^-4 M
Volume of Fe^2+ (VA)= 20.0 ml
Let the concentration of MnO4^- be CB (the unknown)
Volume of the MnO4^- (VB) = 12.6 ml
Let the number of moles of Fe^2+ be NA= 5 moles
Let the number of moles of MnO4^- be NB = 1 mole
From;
CAVA/CBVB = NA/NB
CAVANB = CBVBNA
CB= CAVANB/VBNA
CB= 4.425 × 10^-4 × 20 × 1/12.6 × 5
CB = 1.4 × 10^-4 M
Answer:
See explanation
Explanation:
According to the law of conservation of mass; the total mass of reactants on the left hand side of the reaction equation is equal to the total mass of products on the right hand side of the reaction equation.
Hence, the total mass of each atom on either side of the reaction equation should be exactly the same.
Since there are two atoms of oxygen on the reactants side, the total mass of oxygen = 16 amu * 2 = 32 amu
Since there are two oxygen atoms on the products side, total mass of oxygen = 16 amu * 2 = 32 amu
No, the density of an object does not depend on its size.
A piece of glass with a volume of 10 cm³ may have a mass of 27 g. Its density is
<em>D</em> = <em>m</em>/<em>V</em> = 27 g/10 cm³ = 2.7 g/cm³
A piece of the same type of glass with a volume of 20 cm³ will have a mass
of 54 g. Its density is
<em>D</em> = <em>m</em>/<em>V</em> = 54 g/20 cm³ = 2.7 g/cm³
Thus, density does not change with the size of an object. Density is an <em>intensive property</em>.