Answer:
All atoms of the same element have always have the same amount of protons.
Explanation:
Atoms of the same element have always have the same amount of protons but not always the same electrons and neutrons. If an atom gains or loses one of its valance electrons, the electrons on the outermost shell, then it becomes ionized. Also not all atoms of the same element have the same amount of neutron. This is called an isotope. A good example would be Carbon 13. Normally, Carbon atoms have an atomic mass of 12 AMU or 12 atomic mass units. However, Carbon atoms have an atomic mass of 13 AMU, consisting of 7 neutrons instead of 6 neutrons. So the only thing that all atoms of the same element have in common is the amount of protons.
Answer:
0.11mole
Explanation:
Let us assume that the condition is at standard temperature and pressure(STP);
Given parameters:
Volume of water = 2.45L
Unknown:
Number of moles found in this volume of water = ?
Solution;
At STP;
Number of moles = 
Input the parameters and solve;
Number of moles of water =
= 0.11mole
The number of moles of water found is 0.11mole
: A chemical process of decomposition involving the splitting of a bond by the addition of water.
<u>Answer:</u> The percentage abundance of
and
isotopes are 77.5% and 22.5% respectively.
<u>Explanation:</u>
Average atomic mass of an element is defined as the sum of masses of each isotope each multiplied by their natural fractional abundance.
Formula used to calculate average atomic mass follows:
.....(1)
Let the fractional abundance of
isotope be 'x'. So, fractional abundance of
isotope will be '1 - x'
- <u>For
isotope:</u>
Mass of
isotope = 35 amu
Fractional abundance of
isotope = x
- <u>For
isotope:</u>
Mass of
isotope = 37 amu
Fractional abundance of
isotope = 1 - x
Average atomic mass of chlorine = 35.45 amu
Putting values in equation 1, we get:
![35.45=[(35\times x)+(37\times (1-x))]\\\\x=0.775](https://tex.z-dn.net/?f=35.45%3D%5B%2835%5Ctimes%20x%29%2B%2837%5Ctimes%20%281-x%29%29%5D%5C%5C%5C%5Cx%3D0.775)
Percentage abundance of
isotope = 
Percentage abundance of
isotope = 
Hence, the percentage abundance of
and
isotopes are 77.5% and 22.5% respectively.