Answer:
Torque; τ = 4.712 × 10^(-3) J
Magnetic moment; M = 0.0248 J/T
Explanation:
Torque is gotten from the formula;
τ = BIA
Where;
B is magnetic field
I is current
A is area
We are given;
B = 0.19T
I = 6.2A
Rectangle dimensions = 5cm by 8cm = 0.05m by 0.08m
Thus;
Area; A = 0.05m × 0.08m = 0.004 m²
Thus;
τ = 0.19 × 6.2 × 0.004
τ = 4.712 × 10^(-3) J
Formula for the magnetic moment is given by;
M = IA
M = 6.2 × 0.004
M = 0.0248 J/T
m = mass = 5 kg
= initial velocity = 100 m/s
= final velocity = ?
I = impulse = 30 Ns
Using the impulse-change in momentum equation
I = m(
-
)
30 = 5 (
- 100)
= 106 m/s
Answer:
To derive the fourth equation of motion, first we have to consider the equation for acceleration and then to rearrange it. or v2 = u2 + 2as and this equation of motion can be used to find the final velocity or the distance travelled if the other values are given.
Explanation:
v= u + at
s =( u + v ) t /2
s = ut + at2/2
v2 = u2 + 2as
If you only know its speed, that's not enough information to catch it. You could even chase it at DOUBLE that speed, and you'd never catch it if you were chasing in the wrong direction.
You also have to know the DIRECTION the runaway car is going, so that you can chase in the same direction.
Now that you know its speed AND direction, you know its velocity. You need that information to have any chance of catching it.