Explanation:
To find the average of these numbers, we just have to add the three numbers together and divide by 3.
- 2.07 + 0. 74 + 1.33 = 4.14. 4.14 / 3 = 1.38
- 1.09 + 1.40 + 0.31 = 2.8. 2.8 / 3 ≈ 9.3333333/ 9 1/3
- 0.95 + 1.61 + 0.56 = 3.12 / 3 = 1.04
- 0.81 + 1.89 + 1.08 = 3.78 / 3 = 1.26
им putins брат, почему вы обманываете нашу систему образования, Это теперь запрещено в России.
Answer:
Negative, because the speed is decreasing.
Answer:
A) 31 kJ
B) 1.92 KJ
C) 40 , 2.48
Explanation:
weight of person ( m ) = 79 kg
height of jump ( h ) = 0.510 m
Compression of joint material ( d ) = 1.30 cm ≈ 0.013 m
A) calculate the force
Fd = mgh
F = mgh / d
W = mg
F(net) = W + F = mg ( 1 + 
= 79 * 9.81 ( 1 + (0.51 / 0.013) )
= 774.99 ( 40.231 ) ≈ 31 KJ
B) calculate the force when the stopping distance = 0.345 m
d = 0.345 m
Fd = mgh hence F = mgh / d
F(net) = W + F = mg ( 1 + 
= 79 * 9.81 ( 1 + (0.51 / 0.345) )
= 774.99 ( 2.478 ) = 1.92 KJ
C) Ratio of force in part a with weight of person
= 31000 / ( 79 * 9.81 ) = 31000 / 774.99 = 40
Ratio of force in part b with weight of person
= 1920 / 774.99 = 2.48
Answer:
W=1055N
Explanation:
In order to solve this problem, we must first do a drawing of the situation so we can visualize theh problem better. (See attached picture)
In this problem, we will ignore the board's weight. As we can see in the free body diagram of the board, there are only three forces acting on the system and we can say the system is in vertical equilibrium, so from this we can say that:

so we can do the sum now:

when solving for the Weight W, we get:

and now we can substitute the given data, so we get:
W=410N+645N
W=1055N