Answer:
150
Explanation:
- C₄H₂OH + 6O2 → 4CO2 + 5H₂O
We can <u>find the equivalent number of O₂ molecules for 100 molecules of CO₂</u> using a <em>conversion factor containing the stoichiometric coefficients of the balanced reaction</em>, as follows:
- 100 molecules CO₂ *
= 150 molecules O₂
150 molecules of O₂ would produce 100 molecules of CO₂.
Answer:
Gallium, Phosphorus, Chlorine, Fluorine
Explanation:
Arrange the elements in order of increasing ionization energy. Use the periodic table to identify their positions on the table.
Drag each tile to the correct box.
Tiles
chlorinefluorinegalliumphosphorus
Sequence
Answer:
I cant answer B, but I can answer A, and I don't think it is a scientifically reasonable plan.
Explanation:
The bag of sand weighs less than the gold statue, and yes the bag of sand seems like it would keep the trap from activating, but you would scientifically have to put something that was the same weight as the gold statue on the pedestal that the statue is on.
Answer:
1)Na2O
let the valency of Na is x
2(x)+(2)=0
2x+2=0
2x=-2
x=-1
2)ZnO
let the valency of Zn is x
x+2=0
x=-2
3)Al2O3
let the valency of Al is x
2(x)+3(2)=0
2x+6=0
2x=-6
x=-3
4)MgO
let the valency of Mg is x
x+2=0
x=-2