The three properties of electromagnetic waves are; they travel at the speed of light, they include ultraviolet waves, and they can transfer energy through empty space.
<h2>Further Explanation</h2><h3>A wave</h3>
- A wave is a transmission of a disturbance. It involves transmission of energy from one point which is the source to another point.
- Waves may be classified depending on the need for a transmission medium or based on the vibration of particles relative to the direction of wave motion.
- Waves may be either transverse or longitudinal based on the direction of wave motion relative to the vibration of particles
- Additionally waves may be classified as either electromagnetic wave or mechanical based on the need for a transmission medium.
<h3>Electromagnetic waves </h3>
- Electromagnetic waves are types of waves that do not require a material medium for transmission.
- All waves of the electromagnetic spectrum are electromagnetic transverse waves that do not require a material medium for transmission.
- They include; radio waves, microwaves, infrared, visible light, ultra-violet, x-rays, and gamma rays.
- All waves of the electromagnetic spectrum travel with a speed of light, 3.0 x10^8 m/s.
- Additionally, electromagnetic waves possess energy that is given by; E = hf; where h is the plank's constant and f is the frequency.
keywords: Wave, electromagnetic wave, electromagnetic spectrum
<h2>Learn more about: </h2>
Level: High school
Subject: Physics
Topic: Electromagnetic spectrum
Sub-topic: Properties of an electromagnetic waves
Answer:
F = GMmx/[√(a² + x²)]³
Explanation:
The force dF on the mass element dm of the ring due to the sphere of mass, m at a distance L from the mass element is
dF = GmdM/L²
Since the ring is symmetrical, the vertical components of this force cancel out leaving the horizontal components to add.
So, the horizontal components add from two symmetrically opposite mass elements dM,
Thus, the horizontal component of the force is
dF' = dFcosФ where Ф is the angle between L and the x axis
dF' = GmdMcosФ/L²
L² = a² + x² where a = radius of ring and x = distance of axis of ring from sphere.
L = √(a² + x²)
cosФ = x/L
dF' = GmdMcosФ/L²
dF' = GmdMx/L³
dF' = GmdMx/[√(a² + x²)]³
Integrating both sides we have
∫dF' = ∫GmdMx/[√(a² + x²)]³
∫dF' = Gm∫dMx/[√(a² + x²)]³ ∫dM = M
F = GmMx/[√(a² + x²)]³
F = GMmx/[√(a² + x²)]³
So, the force due to the sphere of mass m is
F = GMmx/[√(a² + x²)]³
Answer:
+2m/s
Explanation:
average velocity = displacement traveled / total time taken
= +12m/ 6s
= +2 m/s
Answer:39.88 rad/s
Explanation:
Given
mass of cylinder m_1=18 kg
radius R=1.7 m
angular speed 
mass of
dropped at r=0.3 m from center
let
be the final angular velocity of cylinder
Conserving Angular momentum





Answer:
3.626 m/s
Explanation:
v=d/t
1. -0.02/0 = 0 m/s
2. 0.86/0.2 = 4.3 m/s
3. 1.71/0.4 = 4.275 m/s
4. 2.54/0.6 = 4.23 m/s
5. 3.32/0.8 = 4.15 m/s
6. 4.08/1.0 = 4.08 m/s
7. 4.79/1.2 = 3.99 m/s
8. 5.48/1.4 = 3.91 m/s
9. 6.15/1.6 = 3.84 m/s
10. 6.76/1.8 = 3.76 m/s
11. 7.37/2.0 = 3.66 m/s
12. 7.92/2.2 = 3.6 m/s
13. 8.45/2.4 = 3.52 m/s
14. 8.96/2.6 = 3.45 m/s
the mean of these numbers is 3.626
his average velocity ks 3.626 m/s