Answer:N
2
+ 3
H
2
-----> 2N
H
3
Explanation:
N
2
+
H
2
-----> N
H
3
Let us balance this equation by counting the number of atoms on both sides of the arrow.
N
2
+
H
2
-----> N
H
3
N=2 , H=2 N=1, H=3
To balance the number of N atom on Right Hand Side (RHS) , I will add one molecule of N
H
3
on RHS
N
2
+
H
2
-----> 2N
H
3
N=2 , H=2 N=2 , H= 6
To balance the number of H atoms on Left Hand Side (LHS) , I will add two molecules of
H
2
on LHS
N
2
+ 3
H
2
-----> 2N
H
3
N=2 , H=6 N=2 , H= 6
Answer link
Related questions
What is the chemical equation for photosynthesis?
How can I know the relative number of grams of each substance used or produced with chemical equations?
How can I know the relative number of moles of each substance with chemical equations?
How do chemical equations illustrate that atoms are conserved?
How can I know the formula of the reactants and products with chemical equations?
How can I balance this chemical equations? Potassium metal and chlorine gas combine to form...
How many types of chemical reactions exist?
How can a chemical equation be made more informative?
How can I balance this equation? ___ AlBr3 + ____ K2SO4 ---> ____ KBr + ____ Al2(SO4)3
How can I balance this equation? ____ Pb(OH)2 + ____ HCl ---> ____ H2O + ____ PbCl2
d. exothermic; leaving
- Exothermic reaction is a reaction that produces heat in the reaction whereas the endothermic reaction is a reaction in which heat is required to be given in the reaction to produce product.
- Fire is an exothermic reaction.
- A fire is produced due to oxidation of the fuel in the form of liquid or gas.
- A fire is an example of combustion.
- In fire both heat and light are left from fire due to the oxidation of fuel.
Hence, option d. exothermic; leaving is the correct option.
Learn more about fire:
brainly.com/question/12761984
Answer : Electron P has greater energy difference than the Electron N.
Explanation :
Wavelength range of violet light = 400 - 500 nm
Wavelength range of orange light = 600 - 700 nm
The Planck's equation is,

where,
E = energy of light
c = speed of light
= wavelength of light
According to the Planck's equation, wavelength and energy follow inverse relation. As the wavelength increases, energy decreases.
From the given spectrum, the wavelength of violet light is less. We conclude that When electron P gives violet light on transition it means that energy difference between the energy level was high.
From the given spectrum, the wavelength of orange light is more. We conclude that When electron N gives orange light on transition it means that energy difference between the energy level was low.
So, Electron P which gives violet light on transition has greater energy difference than the Electron N.