Answer:
The resultant vector is
.
Explanation:
First, each vector is determined in terms of absolute coordinates:
6-meter vector with direction: 30º north of east.


4-meter vector with direction: 30º east of north.


The resultant vector is obtaining by sum of components:

The resultant vector is
.
The best predictor of the radioactive nature of an isotope is the neutron-to-proton ratio of the atom. Isotopes are atoms of elements having the same number of protons however they don't have the same number of neutrons. Each isotope of an element will have different values of mass number.
Answer:
Different surfaces have different impact force during collision which depends on the time it takes the person to come to rest after collision.
Explanation:
Given;
speed on concrete = 12 m/s (27 mi/h)
speed on soil = 15 m/s (34 mi/h)
speed on water = 34 m/s (76 mi/h)
The impact force on this person during collision is rate of change of momentum;

During collision, the force exerted on this person depends on how long the collision lasts; that is, how long it takes for this person to come to rest after collision with each of the surfaces.
The longer the time of collision, the smaller the force exerted by each.
It takes shorter time for the person to come to rest on concrete surface than on soil surface, also it takes shorter time for the person to come to rest on soil surface than on water surface.
As a result of the reason above, the force exerted on the person during collision by the concrete surface is greater than that of soil surface which is greater than that of water surface.
What you want to test and your hypothesis does.
For example, say you came up with a hypothesis that 'The higher the temperature, the higher the reaction rate will be'.
Your independent variable (the one you change) will be temperature. The dependent variable (the one that changes because of the independent) will be the reaction rate (e.g. bubbles produced).
Before it hits the sand bed, the meteorite is accelerating uniformly with
, so that its speed
satisfies

where
is its initial speed and
is its change in altitude. Notice that we're taking the meteorite's starting position in the atmosphere to be the origin, and the downward direction to be negative. Now,
