1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
jenyasd209 [6]
3 years ago
5

Air flows through a rectangular section Venturi channel . The width of the channel is 0.06 m; The height at the inlet (1) and ou

tlet (4) is 0.04 m. The height (3) in the Bosphorus is 0.02 m. Compressibility and viscous effects can be ignored (rhowater = 1000 kg / m3 , rho air = 1.23 kg / m3) a) Calculate the flow rate if the water in the small tube connected to the static pressure tap in the throat is drawn as 0.10 m as shown? b)Calculate the height (h2) in section (2) according to the flow rate you find in part a . c)Calculate the pressure at the inlet (1) for the fluid to flow ( according to the values you find in a and b )?
Engineering
1 answer:
nataly862011 [7]3 years ago
8 0

Answer:

a) Q = 1.3044 m^3 / s

b) h2 = 0.37 m

c) Pi = Pe = Patm = 101.325 KPa

Explanation:

Given:-

- The constant width of the rectangular channel, b = 0.06 m

- The density of air, ρa = 1.23 kg/m^3

- The density of water, ρw = 1000 kg / m^3

- The height of the channel at inlet and exit, hi = he = 0.04 m

- The height of the channel at point 2 = h2

- The height of the channel at point 3 - Throat , ht = 0.02 m

- The change height of the water in barometer at throat, ΔHt = 0.1 m

- The change height of the water in barometer at point 2, ΔH2 = 0.05 m  

- The flow rate = Q

Solution:-

- The flow rate ( Q ) of air through the venturi remains constant because the air is assumed to be incompressible i.e ( constant density ). We have steady state conditions for the flow of air.

- So from continuity equation of mass flow rate of air we have:

                         m ( flow ) = ρa*An*Vn = Constant

Where,

             Ai : The area of the channel at nth point

             Vi : The velocity of air at nth point.

- Since, the density of air remains constant throughout then we can say that flow rate ( Q ) remains constant as per continuity equation:

                        Q = m ( flow ) / ρa

Hence,

                        Q = Ai*Vi = A2*V2 = At*Vt = Ae*Ve

- We know that free jet conditions apply at the exit i.e the exit air is exposed to atmospheric pressure P_atm.

- We will apply the bernoulli's principle between the points of throat and exit.

Assuming no changes in elevation between two points and the effect of friction forces on the fluid ( air ) are negligible.

                       Pt + 0.5*ρa*Vt^2 = Pe + 0.5*ρa*Ve^2

- To determine the gauge pressure at the throat area ( Pt ) we can make use of the barometer principle.

- There is an atmospheric pressure acting on the water contained in the barometric tube ( throat area ). We see there is a rise of water by ( ΔHt ).

- The rise in water occurs due to the pressure difference i.e the pressure inside the tube ( Pt ) and the pressure acting on the water free surface i.e ( Patm ).

- The change in static pressure leads to a change in head of the fluid.

Therefore from Barometer principle, we have:

              Patm - Pt-abs = pw*g*ΔHt

              101,325 - Pt-abs = 1000*9.81*0.1

              Pt-abs = 101,325 - 981

              Pt-abs = 100,344 Pa ..... Absolute pressure

- We will convert the absolute pressure into gauge pressure by the following relation:

             Pt = Pt-abs - Patm

             Pt = 100,344 - 101,325

             Pt = -981 Pa  ... Gauge pressure  

- Now we will use the continuity equation for points of throat area and exit.

            At*Vt = Ae*Ve

            b*ht*Vt = b*he*Ve

            Ve = ( ht / he ) * Vt

            Ve = ( 0.02 / 0.04 ) * Vt

            Ve = 0.5*Vt

           

- Now substitute the pressure at throat area ( Pt ) and the exit velocity ( Ve ) into the bernoulli's equation expressed before:

            Pt + 0.5*ρa*Vt^2 = 0 + 0.5*ρa*( 0.5*Vt )^2

            -981  = 0.5*ρa*( 0.25*Vt^2 - Vt^2 )

            -981 = - 0.1875*ρa*Vt^2

            Vt^2 = 981 / ( 0.1875*1.23 )

            Vt = √4253.65853

            Vt = 65.22 m/s

- The flow rate ( Q ) of air in the venturi is as follows:

            Q = At*Vt

            Q = ( 0.02 )*( 65.22 )

            Q = 1.3044 m^3 / s   ..... Answer part a

- We will apply the bernoulli's principle between the points of throat and point 2.

Assuming no changes in elevation between two points and the effect of friction forces on the fluid ( air ) are negligible.

                       Pt + 0.5*ρa*Vt^2 = P2 + 0.5*ρa*V2^2

- To determine the gauge pressure at point 2 ( P2 ) we can make use of the barometer principle.

Therefore from Barometer principle, we have:

              Patm - P2-abs = pw*g*ΔH2

              101,325 - P2-abs = 1000*9.81*0.05

              P2-abs = 101,325 - 490.5

              Pt-abs = 100834.5 Pa ..... Absolute pressure

- We will convert the absolute pressure into gauge pressure by the following relation:

             P2 = P2-abs - Patm

             Pt = 100,344 - 100834.5

             Pt = -490.5 Pa  ... Gauge pressure            

- Now substitute the pressure at point 2 ( P2 )  bernoulli's equation expressed before:

            Pt + 0.5*ρa*Vt^2 = P2 + 0.5*ρa*( V2 )^2

            ( Pt - P2 ) + 0.5*ρa*Vt^2 = 0.5*ρa*( V2 )^2

            2*( Pt - P2 ) / ρa + Vt^2 = V2^2

            2*( -981 + 490.5 ) / 1.23 + 65.22^2 = V2^2

            -981/1.23 + 4253.6484 = V2^2

            V2 = √3456.08742

            V2 = 58.79 m/s

- The flow rate ( Q ) of air in the venturi remains constant is as follows:

            Q = A2*V2

            Q = b*h2*V2

            h2 = Q / b*V2  

            h2 = 1.3044 / ( 0.06*58.79)

            h2 = 0.37 m      ..... Answer part b

- We will apply the bernoulli's principle between the points of inlet and exit.

Assuming no changes in elevation between two points and the effect of friction forces on the fluid ( air ) are negligible.

                       Pi + 0.5*ρa*Vi^2 = Pe + 0.5*ρa*Ve^2

- Now we will use the continuity equation for points of inlet area and exit.

            Ai*Vi = Ae*Ve

            b*hi*Vi = b*he*Ve

            Vi = ( he / hi ) * Ve

            Vi = ( 0.04 / 0.04 ) * 0.5*Vt

            Vi = Ve = 0.5*Vt = 0.5*65.22 = 32.61 m/s

- Now substitute the velocity at inlet in bernoulli's equation expressed before:

            Pi + 0.5*ρa*Vi^2 = 0 + 0.5*ρa*( Ve )^2

           

Since, Vi = Ve then:

           Pi = Pe = 0 ( gauge pressure ).

           Pi = Pe = Patm = 101.325 KPa

Comment: If the viscous effects are considered then the Pressure at the inlet must be higher than the exit pressure to do work against the viscous forces to drive the fluid through the venturi assuming the conditions at every other point remains same.

You might be interested in
The function below takes two string parameters: sentence is a string containing a series of words separated by whitespace and le
Eddi Din [679]

Answer:

def extract_word_with_given_letter(sentence, letter):

   words = sentence.split()

   for word in words:

       if letter in word.lower():

           return word

   return ""

# Testing the function here. ignore/remove the code below if not required

print(extract_word_with_given_letter('hello HOW are you?', 'w'))

print(extract_word_with_given_letter('hello how are you?', 'w'))

4 0
3 years ago
What is the difference between an arch and a dome?
bonufazy [111]
This is an arch, its basically a half circle attach to a rectangle, you could also think of it as an upside down U. A dome is a Sphere with the inside hollowed out.

1 difference is a dome is a 3 dimensional shape while an arch is normally not. Or that a dome is the complete shape with a arch act as it’s diameter.

4 0
2 years ago
When your hands are on home row, they are resting on the____.
MArishka [77]

Answer:

to which four fingers of each hand return as a base, on a QWERTY keyboard being A, S, D, and F for the left hand and J, K, L, and the semicolon for the right

Explanation:

4 0
3 years ago
Read 2 more answers
(a) Differentiate between heat treatment of ferrous and non-ferrous alloys (b) With your understanding of material's thermal pro
liubo4ka [24]

Answer:

In ferrous metal iron present but on the other hand in the non ferrous material iron does not present.That is why there is a different heat treatment process for ferrous and nonferrous materials.

Ferrous materials contains iron is the main constitute.Like steel ,cast iron ,wrought iron .Steel and cast iron are  the alloy element of iron ans carbon.Wrought iron is the purest from of iron.

Heat treatment process for  ferrous materials :

1.Normalizing

2.Annealing

3.Quenching

4.Surface hardening

Heat treatment process for non ferrous materials :

Mostly annealing process is used for non ferrous materials.After annealing non ferrous will become soft.

When two metal plates are joined then they form a bimetallic structure.The bimetallic structure is used to find the relationship of thermal temperature and the mechanical displacement.

The use of bimetallic structure -In clock ,thermometers ,engines.

7 0
3 years ago
The interior wall of a building is made from 2×4 wood studs, plastered on one side. If the wall is 13 ft high, determine the loa
Elanso [62]

Answer:

load  = 156 lb/ft

Explanation:

given data

interior wall of a building = 2×4 wood studs

plastered = 1 side

wall height =  13 ft

solution

we get here load so first we get wood stud load  and that is  

we know here from ASCE-7 norm

dead load of 2 x 4 wood studs with 1 side plaster  = 12 psf

and we have given height 13 ft

so load will be =  12 psf × 13 ft

load  = 156 lb/ft

7 0
3 years ago
Other questions:
  • Q5. A hypothetical metal alloy has a grain diameter of 2.4 x 10-2 mm. After a heat treatment at 575°C for 500 min, the grain dia
    7·1 answer
  • A PMOS device with VT P = −1.2 V has a drain current iD = 0.5 mA when vSG = 3 V and vSD = 5 V. Calculate the drain current when:
    12·1 answer
  • Consider air entering a heated duct at P1 = 1 atm and T1 = 288 K. Ignore the effect of friction. Calculate the amount of heat pe
    10·2 answers
  • The cross-section of a rough, rectangular, concrete() channel measures . The channel slope is 0.02ft/ft. Using the Darcy-Weisbac
    8·1 answer
  • An inventor claims to have developed a power cycle operating between hot and cold reservoirs at 1175 K and 295 K, respectively,
    9·1 answer
  • A closed system of mass 10 kg undergoes a process during which there is energy transfer by work from the system of 0.147 kJ per
    9·2 answers
  • Carbon dioxide at a temperature of 0oC and a pressure of 600 kPa (abs) flows through a horizontal 40-mm- diameter pipe with an a
    10·1 answer
  • 2 Air enters the compressor of a cold air-standard Brayton cycle at 100 kPa, 300 K, with a mass flow rate of 6 kg/s. The compres
    7·1 answer
  • Propose any improvements if there are any in brake system
    7·1 answer
  • A seamless pipe carries 2400m³ of steam per hour at a pressure of 1.4N/mm².The velocity of flow is 30m/s.assuming the tensile st
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!