Answer:
Superconducting materials can transport electrons with no resistance, and hence release no heat, sound, or other energy forms. Superconductivity occurs at a specific material's critical temperature (Tc). As temperature decreases, a superconducting material's resistance gradually decreases until it reaches critical temperature. At this point resistance drops off, often to zero, as shown in the graph at right.
Explanation:
<span>A chemical bond is a lasting attraction between atoms, ions or molecules that enables the formation of chemical compounds. The bond may result from the electrostatic force of attraction between oppositely charged ions as in ionic bonds; or through the sharing of electrons as in covalent bonds.
</span>
Explanation:
direction of electric field is same as that of force experienced by the test charge
It magnifies light received from distant objects.
Answer:
Answer: The spring constant of the spring is k = 800 N/m, and the potential energy is U = 196 J. To find the distance, rearrange the equation: The equation to find the distance the spring has been compressed is therefore: The spring has been compressed 0.70 m, which resulted in an elastic potential energy of U = 196 J being stored.
Explanation: