Answer: b
Explanation: the two pieces will repel as both have obtained a static charge.
We are given:
v0 = initial velocity = 18 km/h
d = distance = 4 km
v = final velocity = 75 km/h
a =?
<span>
We can solve this problem by using the formula:</span>
v^2 = v0^2 + 2 a d
75^2 = 18^2 + 2 (a) * 4
5625 = 324 + 8a
<span>a = 662.625 km/h^2</span>
This condition is called Galileo's Law of Inertia which states that all bodies accelerate at the smart rate , no matter what are their masses or size. Inertia is that tendency of matter to resist changes in its velocity. <span>Isaac Newton's first law of motion captures the concept of inertia. </span>
Answer:
C
Explanation:
Magnitude of any quantity is the measurable value of the quantity. While the direction of the given quantity is the specific pointing direction of position or the angle at which it move.
The magnitude of the vector described below? 13 m/s to the east will be 13 m/s
While the direction will be eastward.
Therefore, the magnitude is 13 m/s
The correct answer is option C
In mechanics, massless strings are often assumed. but this is not a good assumption when discussing waves on strings because the speed of a wave on a massless string would be infinite.
<h3>How to explain the information?</h3>
It should be noted that waves simply means the dynamic disturbance of a quantity.
It should be noted that in mechanics, massless strings are often assumed. but this is not a good assumption when discussing waves on strings because the speed of a wave on a massless string would be infinite.
Learn more about waves in:
brainly.com/question/15663649
#SPJ4