Answer:
B. the resonance hybrid of all structures
Explanation:
The idea of resonance is used to explain bonding in compounds where a single structure does not fully account for all the bonding interactions in a molecule.
A number of equivalent structures are then used to show the nature of bonding in such a molecule. Such structures are called resonance structures or canonical structures. None of these structures individually offer a holistic explanation to the bonding interactions in the molecule under study.
However, a hybrid of all the canonical structures does explain the nature of bonding in the molecule.
The solution would be like this for this specific problem:
<span>Given:
H2 = </span><span>2.6 atm
CL2 = 3.14 atm</span>
<span>
pressure H2 = 2.6 - x
pressure Cl2 = 3.14 - x
<span>pressure HBr = 2x = 1.13
x = 1.13 / 2 = 0.565
<span>pressure H2 = 2.6 - 0.565 = 2.035
pressure Br2 = 3.14 - 0.565 = 2.575
Kp = (1.13)^2 / 2.035 x 2.575</span></span></span>
= 1.2769 / (5.240125)
= 0.24367739319195629875241525726963
= 0.244
<span>Therefore, the Kp for the reaction at the given temperature
is 0.244.
To add, </span>the hypothetical pressure of a gas if
it alone occupied the whole volume of the original mixture at the same
temperature is called the partial pressure or Kp.
Answer:
A product in science is a substance that is formed when two or more chemicals react.
Explanation:
When a chemical reaction takes place, a new substance is often created from the atoms or molecules of the original substances. There are often multiple products formed in a reaction.
Answer:
The answer to your question is pH = 1.45
Explanation:
Data
pH = ?
Volume 1 = 200 ml
[HCl] 1 = 0.025 M
Volume 2 = 150 ml
[HCl] 2 = 0.050 M
Process
1.- Calculate the number of moles of each solution
Solution 1
Molarity = moles / volume
-Solve for moles
moles = 0.025 x 0.2
result
moles = 0.005
Solution 2
moles = 0.050 x 0.15
-result
moles = 0.0075
2.- Sum up the number of moles
Total moles = 0.005 + 0.0075
= 0.0125
3.- Sum up the volume
total volume = 200 + 150
350 ml or 0.35 l
4.- Calculate the final concentration
Molarity = 0.0125 / 0.35
= 0.0357
5.- Calculate the pH
pH = -log [H⁺]
-Substitution
pH = -log[0.0357]
-Result
pH = 1.45