Answer:
Explanation:
Total momentum of the system before the collision
.5 x 3 - 1.5 x 1.5 = -0.75 kg m/s towards the left
If v be the velocity of the stuck pucks
momentum after the collision = 2 v
Applying conservation of momentum
2 v = - .75
v = - .375 m /s
Let after the collision v be the velocity of .5 kg puck
total momentum after the collision
.5 v + 1.5 x .231 = .5v +.3465
Applying conservation of momentum law
.5 v +.3465 = - .75
v = - 2.193 m/s
2 ) To verify whether the collision is elastic or not , we verify whether the kinetic energy is conserved or not.
Kinetic energy before the collision
= 2.25 + 1.6875
=3.9375 J
kinetic energy after the collision
= .04 + 1.2 =1.24 J
So kinetic energy is not conserved . Hence collision is not elastic.
3 ) Change in the momentum of .5 kg
1.5 - (-1.0965 )
= 2.5965
Average force applied = change in momentum / time
= 2.5965 / 25 x 10⁻³
= 103.86 N
Explanation:
When water is boiled in the flask . Some portion of it is evaporated out . Now when cork is placed on it and is placed in the ice box . It cools down , by which the pressure inside decreases .
Due to decrease of pressure , the boiling point of water also decreases . Now it can boil at lower temperature . Thus it starts boiling at lower temperature even , when placed in the ice box .
Answer:
k = 49 N/m
Explanation:
Given that,
Mass, m = 250 g = 0.25 kg
When the mass is attached to the end of the spring, it elongates 5 cm or 0.05 m. We need to find the spring constant. Let it is k.
The force due to mass is balanced by its weight as follows :
mg=kx

So, the spring constant of the spring is 49 N/m.
Answer:
1, 2, 4, 5 are correct
Explanation:
1) This is true because In a neutral atom, the number of positive charges (protons) is equal to the number of negative charges (electrons).
2) This is true because the mass of the atom which is made up of the protons and neutrons, is located in the tiny nucleus.
3) This is not true because the positively charged particles in the nucleus are called protons.
4) This is true because electrons move around the nucleus in diffuse areas known as orbitals.
5) This is true because opposite charges attract each other. And electron is a negative charge.
6) This is not true because the radius of the electron cloud is normally 10,000 times larger than the radius of the nucleus.
Answer:
Mass remains constant but weight reduces
Explanation:
Mass is the amount of matter in an object so whether on moon or any other planet, it does not change despite the changes in acceleration.
Weight is a product of mass and acceleration due to gravity, expressed as W=mg where m is the mass, W is weight and g is acceleration. From the above formula, it is evident that when you decrease g, then W also decreases while m is constant. Similarly, when m is constant and g is increased then W also increases.
Therefore, for this case, since g decreases, the weight decreases but mass remains constant.